Skip to main content
Log in

The effect of GdF3 on red emission of Eu3+: LiYF4 single crystals grown by the Bridgman method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The bulk LiYF4 single crystals with high-quality doped 0.5 mol% Eu3+ and various Gd3+ from 1.5 to 4.5 mol% in size of about Φ 10 × 65 mm were successfully grown by an improved Bridgman method. The X-ray diffraction (XRD) measurement and Rietveld refinement analysis were conducted to verify the structure of the obtained crystal crystals. The spectroscopic properties of the single crystals as change of GdF3 concentration were investigated with the help of absorption, excitation, emission spectra, and decay curves of their fluorescence. The characteristic absorption bands of Gd3+ at 277 nm and Eu3+ at 395 nm were observed in the co-doped samples. Significant enhanced emission intensity of 613 nm was observed as increasing of GdF3 content into Eu3+:LiYF4 single crystal upon excitations of both 277 nm and 395 nm lights. The former was owing to the energy transfer (ET) between Gd3+ and Eu3+, while the latter was due to the change of crystal field environment around Eu3+ by the increasing of GdF3 content. The ET from Gd3+ to Eu3+ ions was further confirmed from the result of the luminescence decay analysis. Besides, the full width half-maximum (FWHM) of 613 nm emission band was estimated to be ~ 4.5 nm. The Eu3+/Gd3+ co-doped LiYF4 single crystal with excellent optical and physicochemical properties might has significant applications in red laser and display devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data used during the study appear in the submitted article.

References

  1. L.L. Lu, R.J. Li, T.Y. Peng et al., Effects of rare earth ion modifications on the photoelectrochemical properties of ZnO-based dye-sensitized solar cells. Renew. Energy 36, 3386–3393 (2011)

    Article  CAS  Google Scholar 

  2. H.Y. Fu, X.S. Qiao, S. Cui et al., Tunable white light emission from glass-ceramics containing Eu2+, Tb3+, Eu3+ co-doped SrLaF5 nanocrystals. Mater. Lett. 71, 15–17 (2012)

    Article  CAS  Google Scholar 

  3. R. Ao, L. Xing, W. Yang, A high-brightness phosphor based on Yb3+/Er3+ codoped Y2O3 micro-crystals and controllable temperature sensing sensitivity via rare earth ions. Opt. Commun. 492, 126967 (2021)

    Article  CAS  Google Scholar 

  4. Y. Chen, J. Wang, G. Wang, Photoluminescence properties of near-UV pumped deep red-emitting Sr2ZnGe2O7: Eu3+ phosphors for plant growth LEDs. Opt. Mater. 106, 110022 (2020)

    Article  CAS  Google Scholar 

  5. S.H. Wang, Y.Q. Xu, T. Chen et al., A red phosphor LaSc3(BO3)4:Eu3+ with zero-thermal-quenching and high quantum efficiency for LEDs. Chem. Eng. J. 404, 125912 (2021)

    Article  CAS  Google Scholar 

  6. M. Rajendran, S. Vaidyanathan, Systematic investigation of Eu3+ activated Na2Ln4(MoO4)7 Ln = La, Gd and Y narrow band red emitting phosphors for hybrid white LEDs and plant growth. New J. Chem. 44, 14823–14836 (2020)

    Article  Google Scholar 

  7. A.Q. Zhang, M.C. Jia, Z. Sun et al., High concentration Eu3+-doped NaYb(MoO4)2 multifunctional material: Thermometer and plant growth lamp matching phytochrome P-R. J. Alloys Compd. 782, 203–208 (2019)

    Article  CAS  Google Scholar 

  8. Q. Li, J. Lin, J. Wu et al., Preparation of Gd2O3:Eu3+ downconversion luminescent material and its application in dye-sensitized solar cells. Chin. Sci. Bull. 56, 3114–3118 (2011)

    Article  CAS  Google Scholar 

  9. X. Huang, B. Li, H. Guo et al., Molybdenum-doping-induced photoluminescence enhancement in Eu3+ -activated CaWO4 red-emitting phosphors for white light-emitting diodes. Dyes Pigm. 143, 86–94 (2017)

    Article  CAS  Google Scholar 

  10. W.N. Zhang, Y. Tong, F.F. Hu et al., A novel single-phase Na3.6Y1.8 (PO4)3 :Bi3+ ,Eu3+ phosphor for tunable and white light emission. Ceram. Int. 47, 284–291 (2021)

    Article  CAS  Google Scholar 

  11. G.Q. Chen, F.L. Wang, J. Yu et al., Improved red emission by codoping Li+ in ZnWO4:Eu3+ phosphors. J. Mol. Struct. 1128, 1–4 (2017)

    Article  CAS  Google Scholar 

  12. X. Bao, S. Zhou, J. Wang et al., Color tunable phosphor CaMoO4:Eu3+, Li+ via energy transfer of MoO42–Eu3+ dependent on morphology and doping concentration. Mater. Res. Bull. 48, 1034–1039 (2013)

    Article  CAS  Google Scholar 

  13. V. Singh, N. Singh, M.S. Pathak et al., Annealing effect on the structural, optical and EPR properties of UV radiation emitting Gd3+ doped SrAl2O4 host. J. Electron. Mater. 48, 238–243 (2019)

    Article  CAS  Google Scholar 

  14. B. Li, X. Huang, H. Guo et al., Energy transfer and tunable photoluminescence of LaBWO6:Tb3+, Eu3+ phosphors for near-UV white LEDs. Dyes Pigm. 150, 67–72 (2018)

    Article  CAS  Google Scholar 

  15. T. Samanta, S.K. Jana, A.E. Praveen et al., Ligand sensitized strong luminescence from Eu3+-doped LiYF4 nanocrystals: a photon down-shifting strategy to increase solar-to-current conversion efficiency. Dalton Trans. 46, 9646–9653 (2017)

    Article  CAS  Google Scholar 

  16. I. Ullah, G. Rooh, S.A. Khattak et al., Effective red-orange luminescence and energy transfer from Gd3+ to Eu3+ in lithium gadolinium magnesium borate for optical devices. J. Non-Cryst. Solids 569, 120927 (2021)

    Article  CAS  Google Scholar 

  17. H.L. Wang, L.H. Tian, Luminescence properties of SrIn2O4:Eu3+ incorporated with Gd3+ or Sm3+ ions. J. Alloys Compd. 509, 2659–2662 (2011)

    Article  CAS  Google Scholar 

  18. N. Pawlik, B. Szpikowska-Sroka, M. Soltys et al., Optical properties of silica sol-gel materials singly- and doubly-doped with Eu3+ and Gd3+ ions. J. Rare Earths 34, 786–795 (2016)

    Article  CAS  Google Scholar 

  19. B. Fan, S. Qi, W. Zhao et al., Photoluminescence properties and energy transfer of red phosphors Y2P4O13: Gd3+, Eu3+. J. Lumin. 196, 520–524 (2018)

    Article  CAS  Google Scholar 

  20. K.N. Kumar, L. Vijayalakshmi, J.S. Kim, Enhanced red luminescence quantum yield from Gd3+/Eu3+: CaLa2ZnO5 phosphor spheres for photonic applications. Mater. Res. Bull. 103, 234–241 (2018)

    Article  CAS  Google Scholar 

  21. Y. Gan, W. Liu, W. Zhang et al., Effects of Gd3+ codoping on the enhancement of the luminescent properties of a NaBi(MoO4)2:Eu3+ red-emitting phosphors. J. Alloys Compd. 784, 1003–1010 (2019)

    Article  CAS  Google Scholar 

  22. T.S. Sreena, P.P. Rao, A.K.V. Raj et al., Narrow-band red-emitting phosphor, Gd3Zn2Nb3O14:Eu3+ with high color purity for phosphor-converted white light emitting diodes. J. Alloys Compd. 751, 148–158 (2018)

    Article  CAS  Google Scholar 

  23. M. Zhu, C. Hu, J. Li et al., Synthesis and annealing effects on the optical spectroscopy properties of red-emitting Gd(P0.5V0.5)O4: X% Eu3+. J. Mater. Sci. Mater. Electron. 29, 20607–20614 (2018)

    Article  CAS  Google Scholar 

  24. J. Hu, H. Xia, H. Hu et al., Synthesis and efficient near-infrared quantum cutting of Pr3+/Yb3+ co-doped LiYF4 single crystals. J. Appl. Phys. 112, 073518 (2012)

    Article  CAS  Google Scholar 

  25. L. Fu, H. Xia, Y. Dong et al., Cooperative down-conversion luminescence in Tb3+/Yb3+ Co-doped LiYF4 single crystals. IEEE Photonics J. 6, 1–9 (2014)

    Article  CAS  Google Scholar 

  26. Z.X. Fang, H. Yu, B. Zhang et al., Suppression of Eu2+ luminescence and enhancement of Eu3+ emission in Eu: CaF2 single crystal via Gd3+ co-doping. J. Lumin. 233, 117877 (2021)

    Article  CAS  Google Scholar 

  27. H.J. Seo, T. Tsuboi, K. Jang, Eu3+ luminescence in Eu-doped KMgF3 crystals investigated by site-selective laser-excitation spectroscopy. Phys. Rev. B 70, 205113 (2004)

    Article  CAS  Google Scholar 

  28. J.M. Goncalves, P. Guillot, J.M.A. Caiut et al., Atmospheric plasma-assisted modification of nanosized LiYF4:Eu3+ with gold nanoparticles. J. Mater. Sci. Mater. Electron. 30, 16724–16731 (2019)

    Article  CAS  Google Scholar 

  29. L. Tang, H. Xia, P. Wang et al., White light emission from Eu3+/Dy3+ co-doped LiYF4 crystal excited by UV light. Mater. Lett. 104, 37–40 (2013)

    Article  CAS  Google Scholar 

  30. J. Hu, H. Xia, H. Hu et al., Enhanced 2.7μm emission from diode-pumped Er3+/Pr3+ co-doped LiYF4 single crystal grown by Bridgman method. Mater. Res. Bull. 48, 2604–2608 (2013)

    Article  CAS  Google Scholar 

  31. W.H. Bragg, The reflection of X-rays by crystals. Nature 91, 477–477 (1913)

    Article  CAS  Google Scholar 

  32. N. Pawlik, B. Szpikowska-Sroka, M. Sołtys et al., Optical properties of silica sol-gel materials singly-and doubly-doped with Eu3+ and Gd3+ ions. J. Rare Earths. 34, 786–795 (2016)

    Article  CAS  Google Scholar 

  33. B. Szpikowska-Sroka, M. Zadlo, R. Czoik et al., Energy transfer from Gd3+ to Eu3+ in silica xerogels. J. Lumin. 154, 290–293 (2014)

    Article  CAS  Google Scholar 

  34. B. Szpikowska-Sroka, L. Żur, R. Czoik et al., Ultraviolet-to-visible downconversion luminescence in solgel oxyfluoride glass ceramics containing Eu3+: GdF3 nanocrystals. Opt. Lett. 39, 3181–3184 (2014)

    Article  CAS  Google Scholar 

  35. S. Kaur, A. Rao, M. Jayasimhadri et al., Tb3+ ion induced colour tunability in calcium aluminozincate phosphor for lighting and display devices. J. Alloys Compd. 826, 154212 (2020)

    Article  CAS  Google Scholar 

  36. C. Gorller-Walrand, K. Binnemans, L. Fluy, Crystal-field analysis of Eu3+ in LiYF4. J. Phys.: Condens. Matter 5, 8359 (1993)

    Google Scholar 

  37. S.V. Motloung, F.B. Dejene, R.E. Kroon et al., Radiative energy transfer in ZnAl2O4:0.1% Ce3+, x% Eu3+ nanophosphor synthesized by sol-gel process. Physica B 468, 11–20 (2015)

    Article  CAS  Google Scholar 

  38. M.M. Rodriguez-Garcia, A. Ciric, Z. Ristic et al., Narrow-band red phosphors of high colour purity based on Eu3+-activated apatite-type Gd9.33(SiO4)6O2. J. Mater. Chem. C 9, 7474–7484 (2021)

    Article  CAS  Google Scholar 

  39. A.I. Becerro, M. Allix, M. Laguna et al., Revealing the substitution mechanism in Eu3+:CaMoO4 and Eu3+, Na+:CaMoO4 phosphors. J. Mater. Chem. C 6, 12830–12840 (2018)

    Article  CAS  Google Scholar 

  40. C. Lin, Y. Song, F. Gao et al., Luminescent properties and energy transfer of Gd3+/Eu3+ co-doped high uniform meso-silica nanorods. J. Lumin. 158, 456–463 (2015)

    Article  CAS  Google Scholar 

  41. Y. Sun, H. Zou, B. Zhang et al., Luminescent properties and energy transfer of Gd3+/Eu3+ co-doped cubic CaCO3. J. Lumin. 178, 307–313 (2016)

    Article  CAS  Google Scholar 

  42. X. Huang, W. Zhang, X. Wang et al., Structure and luminescence investigation of Gd3+-sensitized perovskite CaLa4Ti4O15:Eu3+: a novel red-emitting phosphor for high-performance white light-emitting diodes and plants lighting. J. Colloid Interface Sci. 608, 3204–3217 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province (No. LY22E020002), the Natural Science Foundation of Ningbo (Nos. 2021J077 and 202003N4099), and K.C. Wong Magna Fund in Ningbo University.

Funding

Funding was provided by the Natural Science Foundation of Zhejiang Province (No. LY22E020002), the Natural Science Foundation of Ningbo (Nos. 2021J077 and 202003N4099), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and study of this paper. PL performed the experiment and data analysis and wrote the manuscript. LF helped perform the analysis with constructive discussion. HX* guided the experiments and manuscript editing. HS contributed significantly to analysis. BC contributed to the conception of the study.

Corresponding author

Correspondence to Haiping Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, P., Fang, L., Xia, H. et al. The effect of GdF3 on red emission of Eu3+: LiYF4 single crystals grown by the Bridgman method. J Mater Sci: Mater Electron 33, 21628–21637 (2022). https://doi.org/10.1007/s10854-022-08951-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08951-x

Navigation