Skip to main content

Advertisement

Log in

Control of white light emission via co-doping of Dy3+ and Tb3+ ions in LiLuF4 single crystals under UV excitation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The lithium lutetium fluoride (LiLuF4) single crystals co-doped with fixed ~ 1.7 mol% Dy3+ and different concentrations of Tb3+ concentrations from 0 to 2.7 mol% were prepared by a Bridgman technique. Influence of Tb3+ ion concentration on the spectroscopic properties of Dy3+/Tb3+ co-doped LiLuF4 single crystal was explored with the help of optical absorption, luminescence, and decay curve. Dy3+ ion acts as a sensitizer for Tb3+ ion emission by the energy transfer process of Dy3+:4F9/2 + Tb3+:7F6 → Dy3+:6H15/2 + Tb3+:5D4 under excitation of UV lights. Moreover, a fitting of the emission decay curve at 575 nm by the Inokuti–Hirayama expression suggested that the dipole–dipole energy transfer from Dy3+ to Tb3+ was dominated. The characteristic emission colors of the prepared crystal were estimated. An ideal white light emission with chromaticity coordinates of (0.328, 0.334) could be obtained and the emission color adjusted from the white to green region by varying Tb3+ ion concentrations under the excitation of UV light. In addition, the temperature-dependent fluorescence suggests that the Dy3+/Tb3+ co-doped LiLuF4 single crystal shows an excellent thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Santana-Alonso, A.C. Yanes, J. Méndez-Ramos, J. Del-Castillo, V.D. Rodríguez, Down-shifting by energy transfer in Dy–Tb co-doped YF-based sol–gel nano-glass-ceramics for photovoltaic applications. Opt. Mater. 33, 587–591 (2011)

    Article  CAS  Google Scholar 

  2. H. Yu, L. Su, X. Qian, D. Jiang, Q. Wu, F. Tang, J. Wang, J. Xu, Influence of Gd3+ on the optical properties of Dy3+-activated CaF2 single crystal for white LED application. J. Electron. Mater. 48(5), 2910–2915 (2019)

    Article  CAS  Google Scholar 

  3. L. Rutkowski, M. Jm, Broadband cavity-enhanced molecular spectra from Vernier filtering of a complete frequency comb. Opt. Lett. 39, 6664 (2014)

    Article  Google Scholar 

  4. P.P. Pawar, S.R. Munishwar, S. Gautam, R.S. Gedam, Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. J Lumin 183, 79–88 (2017)

    Article  CAS  Google Scholar 

  5. P. Dharmaiah, C.S.D. Viswanath, C. Basavapoornima, K.V. Krishnaiah, C.K. Jayasankar, S.-J. Hong, Luminescence and energy transfer in Dy3+/Tb3+ co-doped transparent oxyfluorosilicate glass-ceramics for green emitting applications. Mater. Res. Bull. 83, 507–514 (2016)

    Article  CAS  Google Scholar 

  6. C. Amuthambigai, C.K. Mahadevan, X.S. Shajan, Growth, optical, thermal, mechanical and electrical properties of anhydrous sodium formate single crystals. Curr. Appl. Phys. 16, 1030–1039 (2016)

    Article  Google Scholar 

  7. T. Lei, H.P. Xia, J.T. Peng, Y.P. Zhang, H.C. Jiang, Preparation and luminescence characteristics of LiYF: Tm/Dy single crystals for white-light LEDs. J. Mater. Sci. 48, 7518–7522 (2013)

    Article  Google Scholar 

  8. F. Li, H. Xia, Y. Dong, S. Li, White light emission from Tb3+/Sm3+ codoped LiYF 4 single crystal excited by UV light. Photon. Technol. Lett. IEEE 26, 1485–1488 (2014)

    Article  Google Scholar 

  9. H. Sato, A. Bensalah, H. Machida, M. Nikl, T. Fukuda, Growth and characterization of 3-in size Tm, Ho-codoped LiYF4 and LiLuF4 single crystals by the Czochralski method. J. Cryst. Growth 253, 221–229 (2003)

    Article  CAS  Google Scholar 

  10. P.P. Fedorov, Comment on the paper, “Experimental evaluation and thermodynamic assessment of the LiF–LuF3 phase diagram” by I.A. dos Santos, D. Klimm, S.L. Baldochi, and I.M. Ranieri. Thermochim. Acta 578, 33–34 (2014)

    Article  CAS  Google Scholar 

  11. S. He, H. Xia, J. Zhang, Y. Zhu, B. Chen, Efficiently cooperative energy transfer up-conversion luminescence in Tb3+/Yb3+ C-doped cubic Na5Lu9F32 single crystals by Vertical Bridgman method. Cryst. Res. Technol. 17, 1700136 (2018)

    Article  Google Scholar 

  12. A. Grzechnik, K. Friese, V. Dmitriev, H.P. Weber, J.Y. Gesland, W.A. Crichton, Pressure-induced tricritical phase transition from the scheelite structure to the fergusonite structure in LiLuF4. J. Phys. Condens. Matter 17, 763–770 (2005)

    Article  CAS  Google Scholar 

  13. P.P. Pawar, S.R. Munishwar, R.S. Gedam, Intense white light luminescent Dy3+ doped lithium borate glasses for W-LED: A correlation between physical, thermal, structural and optical properties. Solid State Sci. 64, 41–50 (2017)

    Article  CAS  Google Scholar 

  14. K. Jha, M. Jayasimhadri, Spectroscopic investigation on thermally stable Dy3+ doped zinc phosphate glasses for white light emitting diodes. J. Alloy Compd. 688, 833–840 (2016)

    Article  CAS  Google Scholar 

  15. D. Umamaheswari, B.C. Jamalaiah, T. Sasikala, T. Chengaiah, I.G. Kim, L.R. Moorthy, Photoluminescence and decay behavior of Tb3+ ions in sodium fluoro-borate glasses for display devices. J. Lumin. 132, 1166–1170 (2012)

    Article  CAS  Google Scholar 

  16. T. Srihari, C.K. Jayasankar, Fluorescence properties and white light generation from Dy3+ -doped niobium phosphate glasses. Opt. Mater. 69, 87–95 (2017)

    Article  CAS  Google Scholar 

  17. E. Kaewnuam, N. Wantana, H.J. Kim, J. Kaewkhao, Development of lithium yttrium borate glass doped with Dy3+ for laser medium, W-LEDs and scintillation materials applications. J. Non Cryst. Solids 464, 96–103 (2017)

    Article  CAS  Google Scholar 

  18. Q. Wang, W.H. Zhang, S.Y. Ouyang, B. Yang, Y.P. Zhang, H.P. Xia, Luminescence properties of oxyfluoride tellurite glasses doped with Dy3+ ions and Tb3+ ions. Acta Photon. Sin. 20, 15 (2015). https://doi.org/10.3788/gzxb20154401.0116004

    Article  CAS  Google Scholar 

  19. J. Juárez-Batalla, A.N. Meza-Rocha, G. Muñoz, U. Caldiño, Green to white tunable light emitting phosphors: Dy3+/Tb3+ in zinc phosphate glasses. Opt. Mater. 64, 33–39 (2017)

    Article  Google Scholar 

  20. J.J. Velazquez, V.D. Rodriguez, A.C. Yanes, J. del-Castillo, J. Mendez-Ramos, Increase in the Tb3+ green emission in SiO2–LaF3 nano-glass-ceramics by codoping with Dy3+ ions. J. Appl. Phys. 108, 628 (2010)

    Article  Google Scholar 

  21. G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, U. Caldiño, I.V. Kityk, M.A. Mahdi, Optical absorption, luminescence, and energy transfer processes studies for Dy3+/Tb3+-codoped borate glasses for solid-state lighting applications. Opt. Mater. 72, 380–391 (2017)

    Article  CAS  Google Scholar 

  22. C. Zhu, W. Jia, M. Zhang, X. Ren, J. Shen, Y. Yue, Eu-, Tb-, and Dy-doped oxyfluoride silicate glasses for LED applications. J. Am. Ceram. Soc. 97, 854–861 (2014)

    Article  CAS  Google Scholar 

  23. G.V.L. Reddy, L.R. Moorthy, P. Packiyaraj, B.C. Jamalaiah, Optical characterization of YAl3(BO3)4: Dy3+–Tm3+ phosphors under near UV excitation. Opt. Mater. 35, 2138–2145 (2013)

    Article  Google Scholar 

  24. M. Inokuti, F. Hirayama, Influence of energy transfer by the exchange mechanism on donor luminescence. J. Chem. Phys. 43, 1978–1989 (1965)

    Article  CAS  Google Scholar 

  25. H. Guan, G. Liu, J. Wang, X. Dong, W. Yu, Multicolor tunable luminescence and paramagnetic properties of NaGdF4:Tb3+/Sm3+ multifunctional nanomaterials. Dalton Trans. 43, 10801–10808 (2014)

    Article  CAS  Google Scholar 

  26. T. Erdem, S. Nizamoglu, X.W. Sun, H.V. Demir, A photometric investigation of ultra-efficient LEDs with high color rendering index and high luminous efficacy employing nanocrystal quantum dot luminophores. Opt. Express. 18, 340–347 (2010)

    Article  CAS  Google Scholar 

  27. C.S. Mccamy, Correlated color temperature as an explicit function of chromaticity coordinates. Color Res. Appl. 17, 142–144 (2010)

    Article  Google Scholar 

  28. G. Jing, W. Jing, S. Ye, B. Yu, Luminescence and microstructural features of Dy3+-activated KZnPO4 phosphors. Mater. Res. Bull. 70, 827–831 (2015)

    Article  Google Scholar 

  29. K.W. Meert, J.J. Joos, D. Poelman, P.F. Smet, Investigation of the quenching mechanisms of Tb3+ doped scheelites. J. Lumin. 173, 263–273 (2016)

    Article  CAS  Google Scholar 

  30. Y. Hirai, T. Nakanishi, K. Miyata, K. Fushimi, Y. Hasegawa, Thermo-sensitive luminescent materials composed of Tb(III) and Eu(III) complexes. Mater. Lett. 130, 91–93 (2014)

    Article  CAS  Google Scholar 

  31. Y. Zhuo, A.M. Tehrani, A.O. Oliynyk, A.C. Duke, J. Brgoch, Identifying an efficient, thermally robust inorganic phosphor host via machine learning. Nat. Commun. 9, 4377 (2018)

    Article  Google Scholar 

  32. P. Glaister, An observation on the Arrhenius equation. Trends Cell Biol. 21, 133–140 (1991)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51772159), the Natural Science Foundation of Zhejiang Province (Grant No. LZ17E020001), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Zhou, X., Zhang, J. et al. Control of white light emission via co-doping of Dy3+ and Tb3+ ions in LiLuF4 single crystals under UV excitation. J Mater Sci: Mater Electron 31, 3405–3414 (2020). https://doi.org/10.1007/s10854-020-02889-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02889-8

Navigation