Skip to main content
Log in

Structural and optical investigations at room temperature of sulfurized thermal evaporated Cu2ZnSnS4

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work investigates the structural and optical properties of Cu2ZnSnS4 (CZTS) thin films deposited at room temperature with different thicknesses onto glass substrates, using thermal evaporation method. All CZTS layers were annealed in a furnace in sulfur atmosphere at a temperature of 375 °C during 40 min, so as to optimize the kesterite CZTS phase. The influence of film thickness and sulfurization step on the structural and optical properties of Cu2ZnSnS4 thin layers was developed. XRD investigations exhibit amorphous phase for all samples, except the thicker layer, however, after sulfurization step, all films indicate polycrystalline phase of CZTS, except the thinner one. It is interest to note that the fabricated CZTS layers, show good optical absorption higher than 105 cm−1 in the visible range. We found also that the band gap energy may be monitored and is completely close to the ideal value of about 1.5 eV for solar cell application. This behavior accented after annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this work are included in this published article.

References

  1. T. Todorov, M. Kita, J. Cardaand P. Escribano, Thin Solid Films 517, 2541–2544 (2009). https://doi.org/10.1016/j.tsf.2008.11.035.

  2. M. Ravindiran, C. Praveen kumar, Renew, Sustain. Energy Rev. 94, 317 (2018)

  3. J. Jiang, L. Zhang, W. Wang, R. Hong, Ceram. Int. 44, 11597 (2018)

    Article  CAS  Google Scholar 

  4. N. Khemiri, S. Chamekh, M. Kanzari, Sol. Energy 207, 496 (2020)

    Article  CAS  Google Scholar 

  5. K. Pal, K.B. Thapa, A. Bhaduri, Adv. Sci. Eng. Med. 10, 1 (2018)

    Article  Google Scholar 

  6. M. Marzougi, M. Ben Rabeh, M. Kanzari, Thin Solid Films 672, 41 (2019)

  7. R. Touati, M. Ben Rabeh, M. Kanzari, Thin Solid Films 582, 198 (2015)

  8. H. Katagiri, Thin Solid Films 480, 426 (2005). https://doi.org/10.1016/j.tsf.2004.11.024

    Article  CAS  Google Scholar 

  9. N. Nakayama, K. Ito, Appl. Surf. Sci. 92, 171 (1996)

    Article  CAS  Google Scholar 

  10. H. Yoo, J. Kim, Sol. Energy Mater. Sol. Cells 95, 239 (2011)

    Article  CAS  Google Scholar 

  11. H. Katagiri, N. Isihigaki, T. Ishida, K. Saito, Jpn. J. Appl. Phys. 40, 500 (2001)

    Article  CAS  Google Scholar 

  12. S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choia, J.H. Yunc, J.H. Moona, S.S. Kolekarb, J.H. Kima, Electro chim. Acta 55(12), 4057 (2010)

    Article  CAS  Google Scholar 

  13. O.S. Heavens, Rep. Prog. Phys. 23, 1 (1960)

    Article  Google Scholar 

  14. G.K. Krivyakin, V.A. Volodin, G.N. Kamaev, A.A. Popov, Semiconductors 54(7), 754 (2020)

    Article  CAS  Google Scholar 

  15. A. El-Denglawey, M.M. Makhlouf, M. Dongol, Res. Phys. 10, 714 (2018)

    Google Scholar 

  16. F. Haidong, L. Zhenhuan, M. Huang, X. Zhang, Int. J. Solids Struct. 48, 1754 (2011)

  17. C. J. Bae, J. McMahon, H. Detz, G. Strasser, J. Park, E. Einarsson, D.B. Eason, AIP Adv. 7, 035113 (2017)

  18. R. Nasrin, H. Kabir, H. Akter, A.H. Bhuiyan,. Res. Phys. 19, 103357 (2020)

  19. N.M. Shinde, D.P. Dubal, D.S. Dhawale, C.D. Lokhande, J.H. Kim, J.H. Moon, Mater. Res. Bull. 47, 302 (2012)

    Article  CAS  Google Scholar 

  20. D. Bouokkeze, J. Massoudi, W. Hzez, M. Smari, A. Bougoffa, K. Khirouni, L. Bessais, RSC Adv. 9(70), 40940 (2019)

    Article  CAS  Google Scholar 

  21. R. Lydia, P.S. Reddy, J. Nano-Electron. Phys. 5, 030171 (2013)

    Google Scholar 

  22. R. Touati, M. Ben Rabeh, M. Kanzari, Energy Proc. 44, 44 (2014)

  23. A.T. Hameed, R.A. Wassel, I.M. El Radaf, J. Alloys Compd. 805, 1 (2019)

  24. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor opto-electronics (Wiley, New York, 1973)

    Google Scholar 

  25. I. Konovalov, Thin Solid Films 451, 413 (2004)

    Article  Google Scholar 

  26. S. Kumar, S.A. Kumar, V. Dutta, Energy Proc. 33, 198 (2013)

    Article  Google Scholar 

  27. H. Dahman S. Rabaoui, A. Alyamani, L. El Mir, Vacuum 101, 208 (2014)

  28. A. Larbi, H. Dahman, M. Kanzari, Vacuum 110, 34 (2014)

    Article  CAS  Google Scholar 

  29. A. Jemi, D. Abdelkader, F. ChaffarAkkari, B. Gallas, M. Kanzari, Chin. J. Phys. 60, 193 (2019)

    Article  CAS  Google Scholar 

  30. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627 (1966)

    Article  CAS  Google Scholar 

  31. E.A. Davis, N.F. Mott, Philos. Mag. 22, 903 (1970)

    Article  CAS  Google Scholar 

  32. T. Atwee, A.-S. Gadallah, M.A. Salim, A.M. Ghander, Appl. Phys. A 125, 270 (2019)

    Article  Google Scholar 

  33. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  34. A. Sinaoui, F.C. Akkari, B. Gallas, D. Demaille, M. Kanzari, Thin Solid Films 590, 111 (2015)

    Article  CAS  Google Scholar 

  35. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. Sci. Instrum. 16, 1214 (1983)

    Article  CAS  Google Scholar 

  36. R. Swanepoel, Determination of surface roughness and optical constants of in homogeneous amorphous silicon films. J. Phys. E Sci. Instrum. 17, 896 (1984)

    Article  CAS  Google Scholar 

  37. S.H. Wemple, Phys. Rev. B 7–8, 3767 (1973)

    Article  Google Scholar 

  38. A. Larbi, F. ChaffarAkkari, H. Dahman, D. Demaille, B. Gallas, M. Kanzari, J. Electron. Mater. 45, 5487 (2016)

  39. B. Yous, J. M. Berger, J. P. Ferraton Eta. Donnadien, Thin Solid Films 82, 279 (1981)

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A.L.: Conceptualization, Methodology, Writing Original Draft. H.D: Conceptualization, Methodology, Correction, Discussion. M.K. Conceptualization, Methodology and Supervision.

Corresponding author

Correspondence to H. Dahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larbi, A., Dahman, H. & Kanzari, M. Structural and optical investigations at room temperature of sulfurized thermal evaporated Cu2ZnSnS4. J Mater Sci: Mater Electron 33, 22053–22067 (2022). https://doi.org/10.1007/s10854-022-08936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08936-w

Navigation