Skip to main content

Advertisement

Log in

Synthesis of magnesium and Mg@Ni core-shell nanoparticles by microemulsion for hydrogen storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work magnesium nanoparticles (MgNPs) and Mg@Ni core-shell nanoparticles has been synthesized first time by microemulsion technique. The magnesium nanoparticles (MgNPs) as core and Ni as shell significantly decrease the desorption temperature. The Ni shell and ionic liquid to surfactant ratio played a vital role in the micelle size controlling parameters. The results obtained through SEM and TEM observations reveal that the synthesized nanostructures and core-shell materials were distributed homogeneously and confirmed the Ni shell encapsulated the magnesium particles with size ranging from 9 to 15 nm. The pressure composition temperature (PCT) results show that Mg@Ni core-shell nanoparticles absorbed more hydrogen as compared to pure magnesium nanoparticles (MgNPs) using the same method. The Mg@Ni core-shell nanoparticles at 125 °C in 45 s could absorb 85% of its maximum hydrogen, additionally the dehydrogenation temperature of hydrogenated pure magnesium nanoparticles (MgNPs) were much higher than Mg@Ni core-shell nanoparticles. The dehydrogenation and hydrogenation enthalpies of Mg@Ni core-shell nanoparticles were slightly lower than the pure magnesium nanoparticles (MgNPs). Due to the nano size effect the synthesized core-shell materials i.e. Mg@Ni core-shell nanoparticles have excellent hydrogen storage properties after the hydrogenation and dehydrogenation cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

In this section, please provide details regarding where data supporting reported results can be found, including links to publicly archived datasets analyzed or generated during the study. Please refer to suggested Data Availability Statements in section Springer Research Data Policies” at and https://www.springer.com/journal/10854/submission-guidelines#InstructionsforAuthors_ResearchDataPolicyandDataAvailabilityStatements. You might choose to exclude this statement if the study did not report any data.

References

  1. L. Becker, Hydrogen Storage (2002).

  2. E. Callini, L. Pasquini, L.H. Rude, T.K. Nielsen, T.R. Jensen, E. Bonetti, J. Appl. Phys. 108, 073513 (2010)

    Article  Google Scholar 

  3. P.E. de Jongh, R.W.P. Wagemans, T.M. Eggenhuisen, B.S. Dauvillier, P.B. Radstake, J.D. Meeldijk, J.W. Geus, K.P. de Jong, Chem. Mater. 19, 6052–6057 (2007)

    Article  Google Scholar 

  4. K. Arifin, M. B. Kassim, et. al, in Inter. J. Hyd. Energy, (2012).

  5. S.V. Alapati, J.K. Johnson, D.S. Sholl, J. Phys. Chem. B 110, 8769–8776 (2006)

    Article  CAS  Google Scholar 

  6. L. Zaluski, A. Zaluska, P. Tessier, J.O. Ström-Olsen, R. Schulz, Mater. Sci. Forum 853, 225–227 (1996)

    Google Scholar 

  7. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloys Compd. 288, 217–225 (1999)

    Article  CAS  Google Scholar 

  8. X. Zhang, R. Yang, J. Yang, W. Zhao, J. Zheng, W. Tian, X. Li, Int. J. Hydrog. Energy 36, 4967 (2011)

    Article  CAS  Google Scholar 

  9. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Appl. Phys. A 72, 157–165 (2001)

    Article  CAS  Google Scholar 

  10. J. Huot, D.B. Ravnsbæk, J. Zhang, F. Cuevas, M. Latroche, T.R. Jensen, Prog. Mater. Sci. 58, 30–75 (2013)

    Article  CAS  Google Scholar 

  11. R.W.P. Wagemans, J.H. van Lenthe, P.E. de Jongh, A.J. van Dillen, K.P. de Jong, J. Am. Chem. Soc. 127, 16675–16680 (2005)

    Article  CAS  Google Scholar 

  12. S.S. Makridis, E.I. Gkanas, G. Panagakos, E.S. Kikkinides, A.K. Stubos, P. Wagener, S. Barcikowski, Int. J. Hydrog. Energy 38, 11530 (2013)

    Article  CAS  Google Scholar 

  13. K.-J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan, J.J. Urban, Nat. Mater. 10, 286–290 (2011)

    Article  CAS  Google Scholar 

  14. T.-W. Hong, J. Alloys Compd. 312, 60–67 (2000)

    Article  CAS  Google Scholar 

  15. R.L. Holtz, M.A. Imam, J. Mater. Sci. 34, 2655–2663 (1999)

    Article  CAS  Google Scholar 

  16. D. Cooper, C.Y. Wu, D. Yasensky, D. Butt, M. Cai, KONA Powder Part. J. 23, 139–151 (2005)

    Article  CAS  Google Scholar 

  17. C.J. Serpell, J. Cookson, D. Ozkaya, P.D. Beer, Nat. Chem. 3, 478–483 (2011)

    Article  CAS  Google Scholar 

  18. M.A. Michaels, S. Sherwood, M. Kidwell, M.J. Allsbrook, S.A. Morrison, S.C. Rutan, E.E. Carpenter, J. Colloid Interface Sci. 311, 70–76 (2007)

    Article  CAS  Google Scholar 

  19. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges Wiss Göttingen 26, 98 (1918)

    Google Scholar 

  20. J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd. 293, 495–500 (1999)

    Article  Google Scholar 

  21. Y.K. Gautam, A.K. Chawla, R. Walia, R.D. Agrawal, R. Chandra, Appl. Surf. Sci. 257, 6291–6295 (2011)

    Article  CAS  Google Scholar 

  22. S.A. Shevlin, Z.X. Guo, J. Phys. Chem. C 117, 10883–10891 (2013)

    Article  CAS  Google Scholar 

  23. J. Lu, Y.J. Choi, Z.Z. Fang, H.Y. Sohn, E. Rönnebro, J. Am. Chem. Soc. 131, 15843–15852 (2009)

    Article  CAS  Google Scholar 

  24. H.B. Lu, C.K. Poh, L.C. Zhang, Z.P. Guo, X.B. Yu, H.K. Liu, J. Alloys Compd. 481, 152–155 (2009)

    Article  CAS  Google Scholar 

  25. J. Dai, Y. Song, R. Yang, J. Phys. Chem. C 114, 11328–11334 (2010)

    Article  CAS  Google Scholar 

  26. N.S. Norberg, T.S. Arthur, S.J. Fredrick, A.L. Prieto, J. Am. Chem. Soc. 133, 10679–10681 (2011)

    Article  CAS  Google Scholar 

  27. X.L. Wang, J.P. Tu, C.H. Wang, X.B. Zhang, C.P. Chen, X.B. Zhao, J. Power Sources 159, 163–166 (2006)

    Article  CAS  Google Scholar 

  28. J. Liu, X. Zhang, Q. Li, K.C. Chou, K.D. Xu, Int. J. Hydrogen Energy 34, 1951–1957 (2009)

    Article  CAS  Google Scholar 

  29. J. Fernandez, C. Sanchez, J. Alloys Compd. 340, 189–198 (2002)

    Article  CAS  Google Scholar 

  30. G. Liang, S. Boily, J. Huot, A. Van Neste, R. Schulz, J. Alloys Compd. 267, 302–306 (1998)

    Article  CAS  Google Scholar 

  31. R.A. Varin, T. Czujko, Z. Wronski, Nanotechnology 17, 3856 (2006)

    Article  CAS  Google Scholar 

  32. D. Fátay, A. Révész, T. Spassov, J. Alloys Compd. 399, 237–241 (2005)

    Article  Google Scholar 

  33. S.X. Zhou, Q.Q. Zhang, W.X. Ran, M.J. Yang, D.X. Wang, G.Q. Chen, Y. Zhang, Z.Y. Han, Adv. Mater. Res. 724, 1033–1036 (2013)

    Google Scholar 

  34. A. Zaluska, L. Zaluski, J. Ström-Olsen, J. Alloys Compd. 289, 197–206 (1999)

    Article  CAS  Google Scholar 

  35. R.B. Schwarz, MRS Bull. 24, 40–44 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thankful to the Higher Education Commission of Pakistan for providing financial support under NRPU Project No. 5719 and one of the author (Zia Ur Rehman) also is highly thankful to HEC (Higher Education Commission of Pakistan) for its financial support provided through IRSIP (International Research Support Initiative Program) for carrying out part of the research work at Institute of Inorganic Chemistry, Leipzig University, Germany under the guidance of Prof. Dr. Holger Kohlmann for which the gratitude is extended to him as well.

Funding

All listed authors declare no conflicts of financial or other regarding the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, writing original draft preparation, ZUR; software, validation, MAB, IU; formal analysis, investigation, resources, data curation, writing review and editing, HU; visualization, QUK; supervision, MN; project administration, MN; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zia Ur Rehman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, Z.U., Nawaz, M., Ullah, H. et al. Synthesis of magnesium and Mg@Ni core-shell nanoparticles by microemulsion for hydrogen storage applications. J Mater Sci: Mater Electron 33, 21321–21335 (2022). https://doi.org/10.1007/s10854-022-08927-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08927-x

Navigation