Skip to main content
Log in

Chelating agent-free solid phase extraction (CAF-SPE) of uranium, cadmium and lead by Fe-Al-Mn nanocomposite from aqueous solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fe-Al-Mn nanocomposite has been synthesized by impregnating MnO2 with Fe and Al nitrate aqueous solution for preconcentration and determination of Pb (II), Cd (II) and U (VI) ions from aqueous solution. Fourier Transform Infrared spectroscopy (FTIR), X-Ray-diffraction (XRD) and Scanning electron microscopy coupled with energy dispersive X-ray detector (SEM–EDX) were employed to characterize the as-synthesized nanocomposite. The XRD result indicates that the as-synthesized nanocomposite had a crystal size with rhombohedral structure and size of 30.81 nm. FTIR results confirmed the presence of hydroxyl group and Metal–Oxygen vibration in the adsorbent. A sensitive and simple solid-phase preconcentration procedure for the determination of trace amounts of Pb(II) and Cd(II) ions by FAAS and U(VI) ions by Uv–Vis was developed. The adsorption isotherm was formally described by both Langmuir and Freundlich equation with a maximum adsorption capacity of 12.5 (Pb), 12.8(Cd) and 14.9(U) mg g−1 respectively with preconcentration factor of 15. The limits of detection were 0.09, 0.05 and 0.0097 mg L−1 and the relative standard deviation for ten replicate measurements were 2.47, 0.979 and 2.04%, for Pb (II), Cd(II) and U(VI) ions, respectively. The recovery of Pb(II), Cd(II) and U(VI) ions were found to be 92.7, 91.3, and 81.76%, respectively. On the basis of these findings, the as-synthesized Fe-Al-Mn nanocomposite was successfully applied as a solid phase extraction for preconcentration and determination of Pb(II), Cd(II) and U(VI) ions in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data supporting the finding of this study are available from the corresponding author on reasonable request.

References

  1. M.A. Hashem, M.S. Nur-A-Tomal, N.R. Mon-dal, M.A. Rahman, Hair burning and liming in tanneries is a source of pollution by arsenic, lead, zinc, manganese and iron. Environ. Chem. Lett. 15, 501–506 (2017)

    Article  Google Scholar 

  2. U. Oeh, N.D. Priest, P. Roth, K.V. Ragnarsdottir, W.B. Li, V. Höllriegl, M.F. Thirlwall, B. Michalke, A. Giussani, P. Schramel, H.G. Paretzke, Measurements of daily urinary uranium excretion in German peacekeeping personnel and residents of the Kosovo region to assess potential intakes of depleted uranium (DU). Sci. Total Environ. 381(1–3), 77–87 (2007)

    Article  CAS  Google Scholar 

  3. M. Kapnisti, F. Noli, P. Misaelides, G. Vourlias, D. Karfaridis, A. Hatzidimitriou, Enhanced sorption capacities for lead and uranium using titanium phosphates; sorption, kinetics, equilibrium studies and mechanism implication. Chem. Eng. J. 342, 184–195 (2018)

    Article  CAS  Google Scholar 

  4. A. Wilk, E. Kalisińska, D.I. Kosik Bogacka et al., Cadmium, lead and mercury concentrationsin pathologically altered human kidneys. Environ. Geochem. Health. 39, 889–899 (2017)

    Article  CAS  Google Scholar 

  5. Y. Zhai, Y. Liu, X. Chang, S. Chen, X. Huang, Selective solid-phase extraction of trace cadmium (II) with an ionic imprinted polymer prepared from a dual ligand monomer. Anal. Chim. Acta 593, 123–128 (2007)

    Article  CAS  Google Scholar 

  6. N. Manousi, G.A. Zachariadis, Development and application of an ICP-AES method for the determination of nutrient and toxic elements in savory snack products after autoclave dissoluti-on. Separations 7(4), 66 (2020)

    Article  CAS  Google Scholar 

  7. A.B.M. Helaluddin, R.S. Khalid, M. Alaama, S.A. Abbas, Main analytical techniques used for elemental analysis in various matrices. Trop. J. Pharm. Res. 15, 427–434 (2016)

    Article  CAS  Google Scholar 

  8. O.T. Butler, W.R. Cairns, J.M. Cook, C.M. Davidson, R. Mertz-Kraus, Atomic spectrometry update review of advances in environmental analysis. J. Analyt. At. Spectrom. 33, 8–56 (2018)

    Article  Google Scholar 

  9. F. Sabermahani, M.A. Taher, H. Bahrami, Sepa-ration and preconcentration of trace amounts of gold from water samples prior to determination by flame atomic absorption spectrometry. Arab. J. Chem. 9, S1700–S1705 (2016)

    Article  CAS  Google Scholar 

  10. Z. Guo, Y. Li, S. Zhang, H. Niu, Z. Chen, J. Xu, Enhanced sorption of radiocobalt from water by Bi (III) modified montmorillonite: a novel adsorbent. J. Hazard. Mater. 192, 168–175 (2011)

    Article  CAS  Google Scholar 

  11. B. Kırkan, G.A. Aycik, Solid phase extraction using silica gel modified with azo-dyes derivative for preconcentration and separation of Th (IV) ions from aqueous solutions. J. Radioanal. Nucl. Chem. 308(1), 81–91 (2016)

    Article  Google Scholar 

  12. R.K. Sharma, P. Pant, Preconcentration and determination of trace metal ions from aqueous samples by newly developed Gallic acid modified Amberlite XAD-16 chelating resin. J. Hazard. Mater. 163(1), 295–301 (2009)

    Article  CAS  Google Scholar 

  13. J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li, X. Huang, Nanomaterials for the removal of heavy metals from wastewater. Nanomaterials 9, 424 (2019)

    Article  CAS  Google Scholar 

  14. L.M. Anaya-Esparza, E. Montalvo-González, N. González-Silva, M.D. Méndez-Robles, R. Romero-Toledo, E.M. Yahia, A. Pérez-Larios, Synthesis and characterization of TiO2 ZnO MgO mixed oxide and their antibacterial activity. Materials. 12, 698 (2019)

    Article  CAS  Google Scholar 

  15. B. Abebe, A. Taddesse, T. Kebede, E. Teju, I. Diaz, Fe­Al­Mn ternary oxide nanosorbent: synthesis, characterization and phosphate sorption property. J. Environ. Chem. Eng. 5, 1330–1340 (2017)

    Article  CAS  Google Scholar 

  16. N.B. Wutke, K.M. Diniz, M.Z. Corazza, F.M.D. Oliveira, E.S. Ribeiro, B.T. da Fonseca, M.G. Segatelli, C.R. Teixeira-Tarley, Precon-centration of nickel (II) by a mini-flow system with a novel ternary oxide solid phase and flame atomic absorption spectrometry. Analyt. Lett. 49, 723–736 (2016)

    Article  CAS  Google Scholar 

  17. L.M. Colletti, R. Copping, K. Garduno, E.J. Lujan, A.K. Mauser, A. Mechler-Hickson, I. May, S.D. Reilly, D. Rios, J. Rowley, A.B. Schroeder, The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions. Talanta 175, 390–405 (2017)

    Article  CAS  Google Scholar 

  18. A. Tofik, M.T. Abi, K. Tesfahun, G. Girma, Fe-Al binary oxide nanosorbent: synthesis, characterization and phosphate sorption property. J. Environ. Chem. Eng. 4, 2458–2468 (2016)

    Article  CAS  Google Scholar 

  19. R.H. Nejat, T.M. Abi, T. Ayalew, Synthesis, characterization and photocatalytic activity of MnO2/Al2O3/Fe2O3 nanocomposite for degradation of malachite green. Bull. Chem. Soc. Ethiop. 32, 101–109 (2018)

    Article  Google Scholar 

  20. A.M.G. Carvalho, D.H.C. Araujo, H.F. Canova, C.B. Rodella, D.H. Barrett, S.L. Cuf-fini, R.N. Costa, R.S. Nunes, X-ray powder diffraction at the XRD1 beamline at LNLS. J. Synchrotron. Rad. 23, 1501–1506 (2016)

    Article  CAS  Google Scholar 

  21. J.D. Li, Y.L. Shi, Y.Q. Cai, S.F. Mou, G.B. Jiang, Adsorption of di-ethyl phthalate from aqueous solutions with surfactant coated nano/microsized alumina. J. Chem. Eng. 140, 214–220 (2008)

    Article  CAS  Google Scholar 

  22. T. Herranz, S. Rojas, M. Ojeda, F.J. Perez-Alonso, P. Terreros, K. Pirota, L.G. Fierro, Synthesis, structural features, and reactivity of Fe­Mn mixed oxides prepared by microemulsion. Chem. Mater. 18, 2364–2375 (2006)

    Article  CAS  Google Scholar 

  23. O.N. Krasnobaeva, I.P. Belomestnykh, G.V. Isagulyants, T.A. Nosova, T.A. Elizarova, T.D. Teplyakova, D.F. Kondakov, V.P. Danilov, Synthesis of complex hydroxo salts of magnesium, nickel, cobalt, aluminum, and bismuth and oxide catalysts on their base. J. Inorg. Chem. 52, 141–146 (2007)

    Google Scholar 

  24. G.S. Zhang, J.H. Qu, H.J. Liu, R.P. Liu, R.C. Wu, Fe-Mn binary oxide adsorbent for effective arsenic removal. Water Res. 41(6), 1921–1928 (2007)

    Article  CAS  Google Scholar 

  25. H. Ye, F. Chen, Y. Sheng, G. Sheng, J. Fu, Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep. Purif. Technol. 50, 283–290 (2006)

    Article  CAS  Google Scholar 

  26. Z. Talip, M. Eral, Ü. Hiçsönmez, Adsorption of thorium from aqueous solutions by perlite. J. Environ. Radioact. 100(2), 139–143 (2009)

    Article  CAS  Google Scholar 

  27. E.N. Mahmoud, F.Y. Fayed, K.M. Ibrahim, S. Jaafreh, Removal of cadmium, copper, and lead from water using bio-sorbent from treated olive mill solid residue. Environ. Health Insights 15, 11786302211053176 (2021)

    Article  Google Scholar 

  28. N. Soltanzadeh, A. Morsali, Sonochemical synthesis of a new nanostructures bismuth (III) su-pramolecular compound: new precursor for the preparation of bismuth(III) oxide nano rods and bismuth (III) iodide nano wires. Ultrason. Sonochem. 17, 139–144 (2010)

    Article  CAS  Google Scholar 

  29. P. Subrahmanyam, B. KrishnaPriya, B. Jayaraj, P. Chiranjeevi, Determination of Cd, Cr, Cu, Pb and Zn from various water samples with use of FAAS techniques after the solid phase extraction on rice bran. Toxicol. Environ. Chem. 90(1), 97–106 (2008)

    Article  CAS  Google Scholar 

  30. W.N. Nyairo, Y.R. Eker, C. Kowenje, I. Akin, H. Bingol, A. Tor, D.M. Ongeri, Efficient adso-rption of lead (II) and copper (II) from aqueous phase using oxidized multiwalled carbon nanotubes/polypyrrole composite. Sep. Sci. Technol. 53, 1498–1510 (2018)

    Article  CAS  Google Scholar 

  31. M. Banerjee, R. KumarBasu, S.K. Das, Adsorptive removal of Cu (II) by pistachio shell: isotherm study, kinetic modelling and scaleup designing continuous mode. Environ. Technol. Innov. 15, 100419 (2019)

    Article  Google Scholar 

  32. N. Viswanathan, C.S. Sundaram, S. Meenak-shi, Sorption behaviour of fluoride on carboxylated cross-linked chitosan beads. Colloids Surf. B 68(1), 48–54 (2009)

    Article  CAS  Google Scholar 

  33. X. Wu, Y. Zhang, X. Dou, M. Yang, Fluoride removal performance of a novel Fe­Al­Ce trimetal oxide adsorbent. Chemosphere 69, 1758–1764 (2007)

    Article  CAS  Google Scholar 

  34. W. Ngeontae, W. Aeungmaitrepirom, T. Tuntulani, Chemically modified silica gel with aminothioamidoanthraquinone for solid phase extraction and preconcentration of Pb (II), Cu (II), Ni (II), Co (II) and Cd (II). Talanta 71(3), 1075–1082 (2007)

    Article  CAS  Google Scholar 

  35. M. Behpour, S.M. Ghoreishi, Z. NikkhahQamsari, M. Samiei, N. Soltani, Solid phase extraction of uranium by naphthalene-methyl-trioctylammonium chloride and arsenazo(III) adsorbent and subsequent spectrophotometric determination. Chin. J. Chem. 28(8), 1457–1462 (2010)

    Article  CAS  Google Scholar 

  36. C. Cui, H. Peng, Y. Zhang, K. Nan, M. He, B. Chen, B. Hu, Ti­containing mesoporous silica packed microcolumn separation/preconcentration combined with inductively coupled plasma-mass spectrometry for the determination of trace Cr, Cu, Cd and Pb in environmental samples. J. Analyt. At. Spectrom. 30, 1386–1394 (2015)

    Article  CAS  Google Scholar 

  37. J.S. Suleiman, B. Hu, H. Peng, C. Huang, Separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES. Talanta 77, 1579–1583 (2009)

    Article  CAS  Google Scholar 

  38. Ö. Yalçınkaya, O.M. Kalfa, A.R. Türker, Chelating agent free-solid phase extraction (CAF-SPE) of Co (II), Cu (II) and Cd (II) by new nano hybrid material (ZrO2/B2O3). J. Hazard. Mater. 195, 332–339 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to PGDP (the then SGS) of Haramaya University and Department of Chemistry for the financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The first Author conducts all laboratory works, collects and analyze the data and wrote the manuscript. The contribution of other authors (co-author) was, conceptualizing, supervising, and reviewing the manuscript.

Corresponding author

Correspondence to Ayalew Manahilie Dinkirie.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinkirie, A.M., Tadesse, A.M. & Kebede, T. Chelating agent-free solid phase extraction (CAF-SPE) of uranium, cadmium and lead by Fe-Al-Mn nanocomposite from aqueous solution. J Mater Sci: Mater Electron 33, 21034–21047 (2022). https://doi.org/10.1007/s10854-022-08908-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08908-0

Navigation