Skip to main content
Log in

Changes in electronic and optical characteristics of halogen–alkali adsorbed WSe2 monolayer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Adsorbing halogen and alkali metals atoms modify the optical and electrical characteristics of WSe2 monolayer (2D). The electrical and optical characteristics of the Wse2 monolayer, alkali and halogen atoms adsorbed WSe2 structures are investigated through density functional theory (DFT) simulations. The pristine WSe2 monolayer has insignificant absorption in the infrared and most parts of the visible region, and substantial absorption in the ultraviolet (UV) region (λ < 410 nm) as well as in a small section of the visible spectrum. The absorption coefficient of alkali–halogen adsorbed structures of WSe2 seems to expand with wavelength, and absorption peaks move toward the higher energy region of the optical spectrum, resulting in redshift effect. Significant absorption is observed in the entire visible spectrum (~ 410 to 780 nm) for both alkali and halogen adsorbed WSe2 nanostructures. The chlorine, bromine, and iodine adsorbed WSe2 structure shows larger absorption in the entire visible region among all other adsorbed structures. Presence of absorption peaks in the visible range of wavelengths rather than in the UV region, is beneficial for optoelectronic applications such as LEDs, CRTs, solar cells, and sensors. Trends in computed dielectric constant and refractive index values are also found to be compatible with trends in absorption coefficient values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated and analyzed during this study are included in this published article in the form of plots and its supplementary information files. The raw/detailed datasets generated during the current study are available from the corresponding author on request.

References

  1. A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009)

    Article  Google Scholar 

  2. J.A. Wilson, A.D. Yoffe, Transition metal dichalcogenides: discussion and interpretation of observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969)

    Article  CAS  Google Scholar 

  3. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017)

    Article  CAS  Google Scholar 

  4. L. Gan, Q. Zhang, Y. Zhao, Y. Cheng, U. Schwingenschlogl, Order-disorder phase transitions in the two-dimensional semiconducting transition metal dichalcogenide alloys Mo1_xWxX2 (X = S, Se, and Te). Sci. Rep. 4, 6691 (2014)

    Article  CAS  Google Scholar 

  5. T. Taylor, Abundance of chemical elements in the continental crust: a new table. Geochim. Cosmochim. Acta 28, 1273–1285 (1964). https://doi.org/10.1016/0016-7037(64)90129-2

    Article  CAS  Google Scholar 

  6. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  CAS  Google Scholar 

  7. F. Zhang, W. Li, Y. Ma, Y. Tang, X. Dai, Tuning the Schottky contacts at the graphene/WS2 interface by electric field. RSC Adv. 7, 29350–29356 (2017)

    Article  CAS  Google Scholar 

  8. N.R. Pradhan et al., Metal to insulator quantum-phase transition in few-layered ReS2. Nano Lett. 15(12), 8377–8384 (2015)

    Article  CAS  Google Scholar 

  9. B. Liu, M. Cai, Y. Zhao, L. Wu, L. Wang, First-principles investigation of the Schottky contact for the two- dimensional WSe2 and graphene heterostructure. RSC Adv. 6, 60271–60276 (2016)

    Article  CAS  Google Scholar 

  10. A. Efiekhari, Tungsten dichalcogenides (WS2, WSe2, and WTe2): material chemistry and applications. J. Mater. Chem. A 5(35), 18299–18325 (2017)

    Article  Google Scholar 

  11. H. Yuan, M.S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu, R. Arita, N. Nagaosa, Y. Iwasa, Zeeman-type spin splitting controlled by an electric field. Nat. Phys. 9, 563–569 (2013). https://doi.org/10.1038/nphys2691

    Article  CAS  Google Scholar 

  12. D. Xiao, G. Liu, W. Feng, X. Xu, W. Yao, Coupled spin and valley physics in monolayers of and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012). https://doi.org/10.1103/PhysRevLett.108.196802

    Article  CAS  Google Scholar 

  13. J. Gobrecht, H. Gerischer, H. Tributsch, Electrochemical solar cell based on the d-band semiconductor tungsten-diselenide. Ber. Bunsenges. Phys. Chem. 82(12), 1331–1335 (1978). https://doi.org/10.1002/bbpc.19780821212

    Article  CAS  Google Scholar 

  14. F. Xia, H. Wang, Di. Xiao, M. Dubey, A. Ramasubramaniam, Two-dimensional material nanophotonics. Nat. Photon. 8(12), 899–907 (2014). https://doi.org/10.1038/nphoton.2014.271

    Article  CAS  Google Scholar 

  15. X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, P.-H. Tan, Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44(9), 2757–2785 (2015). https://doi.org/10.1039/C4CS00282B

    Article  CAS  Google Scholar 

  16. B. Yu, B. Zheng, X. Wang, F. Qi, J. He, W. Zhang, Y. Chen, Enhanced photocatalytic properties of graphene modifed few-layered WSe2 nanosheets. Appl. Surf. Sci. 400, 420–425 (2017). https://doi.org/10.1016/j.apsusc.2016.12.015

    Article  CAS  Google Scholar 

  17. J.R. McKone, R.A. Potash, F.J. DiSalvo, H.D. Abruna, Unassisted HI photoelectrolysis using N-WSe2 solar absorbers. Phys. Chem. Chem. Phys. 17, 13984–13991 (2015). https://doi.org/10.1039/c5cp01192b

    Article  CAS  Google Scholar 

  18. Z. Zheng, T. Zhang, J. Yao, Y. Zhang, J. Xu, G. Yang, Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 27, 225501 (2016). https://doi.org/10.1088/0957-4484/27/22/225501

    Article  CAS  Google Scholar 

  19. S. Jo, D. Kang, J. Shim, J. Jeon, M.H. Jeon, G. Yoo, J. Kim, J. Lee, G.Y. Yeom, S. Lee, H. Yu, C. Choi, J. Park, A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based N-doping technique. Adv. Mater. 28, 4824–4831 (2016). https://doi.org/10.1002/adma.201600032

    Article  CAS  Google Scholar 

  20. L. Ye, P. Wang, W. Luo, F. Gong, L. Liao, T. Liu, L. Tong, J. Zang, J. Xu, W. Hu, Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 37, 53–60 (2017). https://doi.org/10.1016/j.nanoen.2017.05.004

    Article  CAS  Google Scholar 

  21. T. Roy, M. Tosun, M. Hettick, G.H. Ahn, C. Hu, A. Javey, 2D–2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures. Appl. Phys. Lett. 108, 083111 (2016). https://doi.org/10.1063/1.4942647

    Article  CAS  Google Scholar 

  22. J. Xu, J. Shim, J. Park, S. Lee, MXene electrode for the integration of WSe2 and MoS2 field effect transistors. Adv. Funct. Mater. 26, 5328–5334 (2016). https://doi.org/10.1002/adfm.201600771

    Article  CAS  Google Scholar 

  23. W. Kang, I. Cho, J. Roh, C. Lee, J. Lee, High-gain complementary metal-oxide-semiconductor inverter based on multi-layer WSe2 field effect transistors without doping. Semicond. Sci. Technol. 31, 105001 (2016). https://doi.org/10.1088/0268-1242/31/10/105001

    Article  CAS  Google Scholar 

  24. S.J. Hong, M. Park, H. Kang, M. Lee, D.H. Jeong, Y.W. Park, Fabrication and independent control of patterned polymer gate for a few-layer WSe2 field-effect transistor. AIP Adv. 6, 085320 (2016). https://doi.org/10.1063/1.4961990

    Article  CAS  Google Scholar 

  25. J. Park, I. Cho, W. Kang, B. Park, J. Lee, Elimination of the gate and drain bias stresses in I–V characteristics of WSe2 FETs by using dual channel pulse measurement. Appl. Phys. Lett. 109, 053503 (2016). https://doi.org/10.1063/1.4960459

    Article  CAS  Google Scholar 

  26. B. Liu, Y. Ma, A. Zhang, L. Chen, A.N. Abbas, Y. Liu, C. Shen, H. Wan, C. Zhou, High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 10, 5153–5160 (2016). https://doi.org/10.1021/acsnano.6b00527

    Article  CAS  Google Scholar 

  27. H.C.P. Movva, A. Rai, S. Kang, K. Kim, B. Fallahazad, T. Taniguchi, K. Watanabe, E. Tutuc, S.K. Banerjee, High-mobility holes in dual-gated WSe2 field-effect transistors. ACS Nano 9, 10402–10410 (2015). https://doi.org/10.1021/acsnano.5b04611

    Article  CAS  Google Scholar 

  28. L. Qiao, C.Q. Qu, H.Z. Zhang, S.S. Yu, X.Y. Hu, X.M. Zhang, W.T. Zheng, Effects of alkali metal adsorption on the structural and field emission properties of grapheme. Diam. Relat. Mater. 19(11), 1377–1381 (2010)

    Article  CAS  Google Scholar 

  29. Y. Ding, Y. Wang, Structural, electronic, and magnetic properties of adatom adsorptions on black and blue phosphorene: a first-principles study. J. Phys. Chem. C119(19), 10610–10622 (2015)

    Google Scholar 

  30. V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Adsorption of metal adatoms on single-layer phosphorene. Phys. Chem. Chem. Phys. 17(2), 992–1000 (2015)

    Article  CAS  Google Scholar 

  31. R. Kochar, S. Choudhary, WSe2/phosphorene heterostructure for optical absorption in visible region. IEEE J. Quantum Electron. 54(4), 1–6 (2018)

    Article  Google Scholar 

  32. C. Tan, Q. Yang, R. Meng, Q. Liang, J. Jiang, X. Sun, H. Ye, An AlAs/germanene heterostructure with tunable electronic and optical properties via external electric field and strain. J. Mater. Chem. C 4(35), 8171–8178 (2016)

    Article  CAS  Google Scholar 

  33. J. Jiang, Q. Liang, R. Meng, Q. Yang, C. Tan, X. Sun, X. Chen, Exploration of new ferromagnetic, semiconducting and biocompatible Nb3X8 (X = Cl, Br or I) monolayers with considerable visible and infrared light absorption. Nanoscale 9(9), 2992–3001 (2017)

    Article  CAS  Google Scholar 

  34. T. Zhenwei, X. Yu, X. Fei, J. Liu, Y. Zhao, H. Wu, G. Yang, S. Yang, L. Yang, Synthesis and optical properties of halogen-doped ZnO phosphor. Mater. Lett. 62, 3018–3020 (2008)

    Article  Google Scholar 

  35. W.C. Simpson, J.A. Yarmoff, Fundamental studies of halogen reactions with III–V semiconductor surfaces. Annu. Rev. Phys. Chem. 47(1), 527–554 (1996)

    Article  CAS  Google Scholar 

  36. B.N. Dev, K.C. Mishra, W.M. Gibson, T.P. Das, First-principles investigation of location and electronic structure of adsorbed halogen atoms on semiconductor surfaces. Phys. Rev. B 29(2), 1101–1104 (1984)

    Article  CAS  Google Scholar 

  37. R.G. Jones, Halogen adsorption on solid surfaces. Prog. Surf. Sci. 27(1–2), 25–160 (1988)

    Article  CAS  Google Scholar 

  38. M. Tyagi, S. Choudhary, Tuning the electronic and optical properties of the monolayer by adsorbing halogen and alkali metals. IET Opotelectron. 15, 1–11 (2021)

    Article  Google Scholar 

  39. P. Tyagi, S. Choudhary, Tuning the electronic and optical properties of molybdenite (WSe2) by adsorption of alkali metals and halogens. Opt. Mater. 118, 111248 (2021)

    Article  CAS  Google Scholar 

  40. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  41. G. Kresse, J. Furthmuller, Efficient iterative schemes forab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  42. H.J. Monkhorst, J.D. Pack, Special points forbrillouin-zone integrations. Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  43. P. BlahaTran, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  Google Scholar 

  44. R.I. Eglitis, Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces. Appl. Surf. Sci. 358, 556–562 (2015)

    Article  CAS  Google Scholar 

  45. W.A. Harrison, Solid State Theory (McGraw-Hill, New York, 1970)

    Google Scholar 

  46. G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: first-principles calculations. AIP 6(5), 055105 (2016)

    Google Scholar 

  47. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, New York, 2004)

    Book  Google Scholar 

  48. D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Prentice Hall, Hoboken, 1999)

    Google Scholar 

  49. W. Schutte, J. De Boer, F. Jellinek, J. Solid State Chem. 70, 207 (1987)

    Article  CAS  Google Scholar 

  50. D. Muoi, N.N. Hieu, H.T. Phung, H.V. Phuc, B. Amin, B.D. Hoi, P.T.T. Le, Electronic properties of WS2 and WSe2 monolayers with biaxial strain: a first-principles study. Chem. Phys. (2018). https://doi.org/10.1016/j.chemphys.2018.12.004

    Article  Google Scholar 

  51. R. Fletcher, Practical Methods of Optimization, 2nd edn. (Wiley, New York, 1987)

    Google Scholar 

  52. P. D’Amico, A. Calzolari, A. Ruini, A. Catellani, New energy with ZnS: novel applications for a standard transparent compound. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-17156-w

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MT was involved in formal analysis, writing original draft, developed the theoretical formalism and performed the analytic calculations and the numerical simulations. SC was involved in supervision. Both authors discussed the results and commented on the manuscript and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Mohit Tyagi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, M., Choudhary, S. Changes in electronic and optical characteristics of halogen–alkali adsorbed WSe2 monolayer. J Mater Sci: Mater Electron 33, 21022–21033 (2022). https://doi.org/10.1007/s10854-022-08907-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08907-1

Navigation