Skip to main content
Log in

The electrical characterization of metal–insulator–semiconductor device with β-naphthol orange interface

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study was formed by the β-naphthol orange/p-Si metal–insulator–semiconductor (MIS) structure by obtaining β-naphthol orange on the p-Si surface using the sol–gel and spin-coating techniques. FTIR, EDX, and NMR analyzes of the synthesized dye-sensitized β-naphthol orange were performed. At room temperature, the current–voltage (IV) measurements of the Al/β-naphthol orange/p-Si MIS structure showed that the device has a high rectification ratio of 3 × 105. Series resistance values were calculated as 385 and 38 Ω by Norde and Cheung methods, respectively. It was determined that the interface state density of the device was at the level of 1013 eV−1 cm−2 and increased exponentially from the middle of the bandgap to the upper edge of the valence band. Frequency-dependent capacitance–voltage (CV) measurements at room temperature showed that the interface state densities in the device are effective in determining device parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C.W. Wilmsen, Physics and Chemistry of III–V Compound Semiconductor Interfaces (Plenum Press, New York, 1985)

    Book  Google Scholar 

  2. R.T. Tung, Mater. Sci. Eng. R 35(1–3), 1–138 (2001)

    Article  Google Scholar 

  3. Ö. Güllü, A. Türüt, Microelectron. Eng. 87, 2482–2487 (2010)

    Article  Google Scholar 

  4. A. Büyükbaş Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, J. Mater. Sci.: Mater. Electron. 29, 159–170 (2018)

    Google Scholar 

  5. Ş Özden, N. Avcı, O. Pakma, A. Kariper, J. Mater. Sci.: Mater. Electron. 32, 27688–27697 (2021)

    Google Scholar 

  6. Ü. Akın, Ö.F. Yüksel, E. Taşcı, N. Tuğluoğlu, Silicon 12, 1399–1405 (2020)

    Article  Google Scholar 

  7. S. Alptekin, S.O. Tan, Ş Altındal, IEEE Trans. Nanotechnol. 18, 1196–1199 (2019)

    Article  CAS  Google Scholar 

  8. A. Tataroğlu, Ş Altındal, Y. Azizian-Kalandaragh, Physica B: Phys. Condens. Matter 582, 411996 (2020)

    Article  Google Scholar 

  9. O. Ongun, E. Taşcı, M. Emrullahoğlu, Ü. Akın, N. Tuğluoğlu, S. Eymur, J. Mater. Sci.: Mater. Electron. 32, 15707–15717 (2021). https://doi.org/10.1007/s10854-021-06122-y

    Article  CAS  Google Scholar 

  10. A.G. Imer, E. Kaya, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, A. Karabulut, F. Yakuphanoglu, J. Mater. Sci.: Mater. Electron. 31, 14665–14673 (2020). https://doi.org/10.1007/s10854-020-04029-8

    Article  CAS  Google Scholar 

  11. S. Yasuhiko, J. Mater. Chem. 10, 1 (2000)

    Article  Google Scholar 

  12. S. Özden, Ö. Güllü, O. Pakma, Eur. Phys. J. Appl. Phys. 82, 20101 (2018). https://doi.org/10.1051/epjap/2018180004

    Article  CAS  Google Scholar 

  13. M. Ulusoy, S. Altındal, Y. Azizian-Kalandaragh, S. Özçelik, Z. Mirzaei-Kalar, Microelectron. Eng. 258, 111768 (2022)

    Article  CAS  Google Scholar 

  14. Ş Altındal, A.F. Özdemir, Ş Aydoğan, A. Türüt, J. Mater. Sci.: Mater. Electron. 33, 12210–12223 (2022). https://doi.org/10.1007/s10854-022-08181-1

    Article  CAS  Google Scholar 

  15. Ş Altındal, Y. Azizian-Kalandaragh, M. Ulusoy, G. Pirgholi-Givi, J. Appl. Polym. Sci. 139(27), e52497 (2022). https://doi.org/10.1002/app.52497

    Article  CAS  Google Scholar 

  16. A. Gurses, M. Acıkyıldız, K. Guneş, M.S. Gurses, Dyes and Pigments (Springer International Publishing, Cham, 2016)

    Book  Google Scholar 

  17. K. Hunger, P. Mischke, W. Rieper, R. Raue, K. Kunde, A. Engel, Ullmann’s Encyclopedia of Industrial Chemistry (Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, 2000). https://doi.org/10.1002/14356007.a03_245

    Book  Google Scholar 

  18. E. Erdik, M. Obalı, N. Yüksekışık, A. Öktemer, T. Pekel, Denel Organik Kimya (Gazi Kitabevi, Ankara, 2007)

    Google Scholar 

  19. A.S. Kavasoglu, C. Tozlu, O. Pakma, N. Kavasoglu, S. Ozden, B. Metin, O. Birgi, S. Oktik, J. Phys. D 42, 145111 (2009)

    Article  Google Scholar 

  20. O. Pakma, Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/858350

    Article  Google Scholar 

  21. C.K. Lim, H.H. Bay, A. Aris, Z.A. Majid, Z. Ibrahim, Environ. Sci. Pollut. Res. Int. 20(7), 5056–5066 (2013). https://doi.org/10.1007/s11356-013-1476-5

    Article  CAS  Google Scholar 

  22. R. Kumar, V. Bansal, A.K. Tiwari, M. Sharma, S.K. Puri, M.B. Patel, A.S. Sarpal, J. Am. Oil Chem. Soc. 88, 1675–1685 (2011). https://doi.org/10.1007/s11746-011-1846-4

    Article  CAS  Google Scholar 

  23. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  24. A. Gümüş, Ş Altındal, Mater. Sci. Semicond. Process. 28, 66 (2014). https://doi.org/10.1016/j.mssp.2014.05.060

    Article  CAS  Google Scholar 

  25. O. Pakma, N. Serin, T. Serin, S. Altındal, Semicond. Sci. Technol. 23, 105014 (2008). https://doi.org/10.1088/0268-1242/23/10/105014

    Article  CAS  Google Scholar 

  26. S. Altindal, J. Farazin, G. Pirgholi-Givi, E. Maril, Y. Azizian-Kalandaragh, Physica B 582, 411958 (2020). https://doi.org/10.1016/j.physb.2019.411958

    Article  CAS  Google Scholar 

  27. H. Norde, J. Appl. Phys. 50, 5052 (1979). https://doi.org/10.1063/1.325607

    Article  CAS  Google Scholar 

  28. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986). https://doi.org/10.1063/1.97359

    Article  CAS  Google Scholar 

  29. Ş Aydoğan, M. Sağlam, A. Türüt, Y. Onganer, Mater. Sci. Eng. C 29, 1486–1490 (2009). https://doi.org/10.1016/j.msec.2008.12.006

    Article  CAS  Google Scholar 

  30. E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd edn. (Clarendon Press, Oxford, 1978)

    Google Scholar 

  31. F. Yakuphanoglu, Synth. Met. 158(3–4), 108–112 (2008)

    Article  CAS  Google Scholar 

  32. M.S.P. Reddy, A. Bengi, V.R. Reddy, J. Jang, Superlattices Microstruct. 86, 157–165 (2015)

    Article  Google Scholar 

  33. V.R. Reddy, C.V. Prasad, V. Janardhanam, C.-J. Choi, J. Mater. Sci.: Mater. Electron. 32, 8092–8105 (2021). https://doi.org/10.1007/s10854-021-05532-2

    Article  CAS  Google Scholar 

  34. V.R. Reddy, C.V. Prasad, K.R. Reddy, Solid State Sci. 97, 105987 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.105987

    Article  CAS  Google Scholar 

  35. K. Sreenu, C.V. Prasad, V.R. Reddy, J. Electron. Mater. 46, 5746–5754 (2017). https://doi.org/10.1007/s11664-017-5611-9

    Article  CAS  Google Scholar 

  36. D.A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill Education, New York, 1992)

    Google Scholar 

  37. Ö. Güllü, Ş Aydoğan, A. Türüt, Microelectron. Eng. 85(7), 1647–1651 (2008). https://doi.org/10.1016/j.mee.2008.04.003

    Article  CAS  Google Scholar 

  38. E. Marıl, Physica B 604, 412732 (2021). https://doi.org/10.1016/j.physb.2020.412732

    Article  CAS  Google Scholar 

  39. Y. Onganer, M. Saǧlam, A. Türüt, H. Efeoǧlu, S. Tüzemen, Solid-State Electron. 39(5), 677–680 (1996). https://doi.org/10.1016/0038-1101(95)00158-1

    Article  CAS  Google Scholar 

  40. M. Soylu, I.S. Yahia, F. Yakuphanoglu, W.A. Farooq, J. Appl. Phys. 110, 74514 (2011). https://doi.org/10.1063/1.3647507

    Article  CAS  Google Scholar 

  41. C. Coskun, S. Aydogan, H. Efeoglu, Semicond. Sci. Technol. 19, 242 (2004). https://doi.org/10.1088/0268-1242/19/2/020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

The author did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

EÖ: Conceptualization, Methodology, Data Collectioan and Analysis, Writing-Reviewing and Editing PÖ: Data Collection and Analysis, Reviewing and Editing. İAK: Methodology. Data Collection and Analysis OP: Data Analysis, Writing-Reviewing and Editing.

Corresponding author

Correspondence to Enise Özerden.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özerden, E., Özden, P., Afşin Kariper, İ. et al. The electrical characterization of metal–insulator–semiconductor device with β-naphthol orange interface. J Mater Sci: Mater Electron 33, 20900–20910 (2022). https://doi.org/10.1007/s10854-022-08897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08897-0

Navigation