Skip to main content

Advertisement

Log in

Effect of pre-deposition annealing on physical properties of CZTSSe thin films deposed by RF-sputtering based on nanoparticles synthesized by solvothermal technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work aims to highlight the beneficial effect of annealing of Cu2ZnSn(S,Se)4 (CZTSSe) nanoparticles (NPs) on the properties of the obtained films by RF-magnetron sputtering at room temperature (RT) and at 200 °C. The CZTSSe targets used for the deposition are obtained using nanoparticles synthesized by solvothermal technique. It is denoted that the elemental composition of thin films becomes independent of the growth temperature in the case of annealed CZTSSe NPs. The optical investigation gives that the gap energy is ranging between 1.26 and 1.40 eV with an Urbach’s energy between 100 and 200 meV. By using the Wemple and Didominico model to analyze the refractive index spectra, we have identified common oscillator energy for all CZTSSe thin films and dispersion energy ranging from 2.63 to 5.81 eV. CZTSSe thin films obtained by means of annealed NPs exhibit higher dielectric constant and refractive index. The dispersion of different parameters with experimental conditions is analyzed via a common relationship that illustrates the linear dependence of n0, Ed, εs, and εL on the square of the valence difference (ΔZ). The conductivity spectra are deduced, and a theoretical model was identified to fit the permittivity spectra. The obtained results are promising for solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data related to this article have been provided in this article. You can open them by Origin software.

References

  1. G. Larramona, S. Bourdais, A. Jacob, C. Choné, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Péré, G. Dennler, J. Phys. Chem. Lett. 5, 3763 (2014)

    Article  CAS  Google Scholar 

  2. J.-K. K. and W. J. Gee Yeong Kim, Dae-Ho Son, Trang Thi Thu Nguyen, Seokhyun Yoon, Minsu Kwon, Chan-Wook Jeon, Dae-Hwan Kim, 2016 Prog. Photovoltaics Res. Appl. 24, 292

  3. E. Y. Muslih, K. S. Bin Rafiq, M. I. Hossain, M. Shahiduzzaman, M. J. Rashid, T. Rahman, B. Munir, K. Althubeiti, H. I. Alkhammash, H. Abdullah, K. Techato, M. Akhtaruzzaman, and K. K. Ho, 2022 J. Alloys Compd. 900, 163457

  4. A. Cazzaniga, A. Crovetto, C. Yan, K. Sun, X. Hao, J. Ramis Estelrich, S. Canulescu, E. Stamate, N. Pryds, O. Hansen, J. Schou, Sol. Energy Mater. Sol. Cells. (2017). https://doi.org/10.1016/j.solmat.2017.03.002

    Article  Google Scholar 

  5. A. Sharmin, M.S. Bashar, M. Sultana, S.M. Al Mamun, AIP Adv. (2020). https://doi.org/10.1063/1.5129202

    Article  Google Scholar 

  6. A.I. Inamdar, S. Lee, K.Y. Jeon, C.H. Lee, S.M. Pawar, R.S. Kalubarme, C.J. Park, H. Im, W. Jung, H. Kim, Sol. Energy 91, 196 (2013)

    Article  CAS  Google Scholar 

  7. M. Abusnina, H. Moutinho, M. Al-Jassim, C. Dehart, M. Matin, J. Electron. Mater. 43, 3145 (2014)

    Article  CAS  Google Scholar 

  8. D. Tang, Q. Wang, F. Liu, L. Zhao, Z. Han, K. Sun, Y. Lai, J. Li, Y. Liu, Surf. Coatings Technol. 232, 53 (2013)

    Article  CAS  Google Scholar 

  9. N. Azmi, P. Chelvanathan, Y. Yusoff, M.T. Ferdaous, A.W.M. Zuhdi, S.K. Tiong, N. Amin, Mater. Lett. 285, 129117 (2021)

    Article  CAS  Google Scholar 

  10. Z.B. Ayadi, H. Mahdhi, K. Djessas, J.L. Gauffier, L. El Mir, S. Alaya, Thin Solid Films 553, 123 (2014)

    Article  CAS  Google Scholar 

  11. S. Chamekh, N. Khemiri, M. Kanzari, S.N. Appl, Sci. 2, 1 (2020)

    Article  Google Scholar 

  12. D. Xiang, A. Zhao, B. Li, Z. Peng, Y. Yuan, Y. Xing, L. Yao, J. Bi, W. Li, X. Zhang, Mater. Sci. Semicond. Process. 148, 106784 (2022)

    Article  CAS  Google Scholar 

  13. S. Sengupta, R. Aggarwal, and M. Raula, 2022 J. Mater. Res. 1

  14. M. Vishwakarma, K. Agrawal, J. Hadermann, B.R. Mehta, Appl. Surf. Sci. 507, 145043 (2020)

    Article  CAS  Google Scholar 

  15. O.P. Singh, N. Vijayan, K.N. Sood, B.P. Singh, V.N. Singh, J. Alloys Compd. 648, 595 (2015)

    Article  CAS  Google Scholar 

  16. J. Yang, J. Xu, D. Miao, S. Jiang, Phys. B Condens. Matter 623, 413375 (2021)

    Article  CAS  Google Scholar 

  17. D. A. Tuan, N. H. Ke, P. Thi Kieu Loan, and L. V. T. Hung, J. Sol-Gel Sci. Technol. 87, 245 (2018).

  18. K. Cheng, Z. Kuang, J. Liu, X. Liu, R. Jin, Z. Lu, Y. Liu, L. Guo, Z. Du, J. Mater. Sci. 52, 11014 (2017)

    Article  CAS  Google Scholar 

  19. Z.B. Ayadi, L. El Mir, K. Djessas, S. Alaya, Thin Solid Films 519, 7572 (2011)

    Article  CAS  Google Scholar 

  20. M. Nouiri, K. Djessas, L. El Mir, Appl. Nanosci. 8, 2001 (2018)

    Article  CAS  Google Scholar 

  21. L. El Mir, Z. Ben Ayadi, M. Saadoun, K. Djessas, H.J. von Bardeleben, S. Alaya, Appl. Surf. Sci. 254, 570 (2007)

    Article  CAS  Google Scholar 

  22. Z. Ben Ayadi, L. El Mir, K. Djessas, S. Alaya, Mater. Sci. Eng. (2008). https://doi.org/10.1016/j.msec.2007.10.006

    Article  Google Scholar 

  23. H. Belaid, M. Nouiri, A. Sayari, Z. Ben Ayadi, K. Djessas, L.E. Mir, J. Electroceramics 35, 141 (2015)

    Article  CAS  Google Scholar 

  24. S. Chen, A. Walsh, J. H. Yang, X. G. Gong, L. Sun, P. X. Yang, J. H. Chu, and S. H. Wei, 2011 Phys. Rev. B - Condens. Matter Mater. Phys. 83, 1

  25. J. Rodriguez-Carvajal, Abstr. Satell. Meet. Powder Diffr. XV Congr. IUCr, Toulouse, Fr. 127 (1990).

  26. M. Dimitrievska, A. Fairbrother, X. Fontané, T. Jawhari, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodríguez, Appl. Phys. Lett. 104, 021901 (2014)

    Article  CAS  Google Scholar 

  27. Y.C. Cheng, C.Q. Jin, F. Gao, X.L. Wu, W. Zhong, S.H. Li, P.K. Chu, J. Appl. Phys. 106, 123505 (2009)

    Article  CAS  Google Scholar 

  28. W. Taylor, Phys. Lett. A 24, 556 (1967)

    Article  CAS  Google Scholar 

  29. M. Guc, S. Levcenko, V. Izquierdo-Roca, X. Fontané, E. Arushanov, A. Pérez-Rodríguez, J. Appl. Phys. 114, 193514 (2013)

    Article  CAS  Google Scholar 

  30. A. Fairbrother, M. Dimitrievska, Y. S. ´ Anchez, V. Izquierdo-Roca, A. P. ´ Erez-Rodríguezrodríguez, and E. Saucedo, 9451 J. Mater. Chem. A Commun. 3, 9451 (2015).

  31. M. Dimitrievska, A. Fairbrother, E. Saucedo, A. Pérez-Rodríguez, V. Izquierdo-Roca, Appl. Phys. Lett. 106(7), 073903 (2015)

    Article  CAS  Google Scholar 

  32. S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, A. Lafond, F. Donatini, G. Rey, S. Siebentritt, A. Walsh, G. Dennler, Adv. Energy Mater. 6, 1502276 (2016)

    Article  CAS  Google Scholar 

  33. M.S. Kumar, S.P. Madhusudanan, S.K. Batabyal, Sol. Energy Mater. Sol. Cells 185, 287 (2018)

    Article  CAS  Google Scholar 

  34. A. Martinez-Ayala, M. Pal, N.R. Mathews, X. Mathew, Can. J. Phys. 92, 875 (2014)

    Article  CAS  Google Scholar 

  35. Q. Tian, Y. Cui, G. Wang, D. Pan, RSC Adv. 5, 4184 (2015)

    Article  CAS  Google Scholar 

  36. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

  37. K. B. Chavan, S. V. Desarada, N. B. Chaure, Mater. Today Proc. 2214–7853 (2022). https://doi.org/10.1016/j.matpr.2022.05.234&nbsp.

    Article  Google Scholar 

  38. D. B. Mitzi, T. K. Todorov, O. Gunawan, M. Yuan, Q. Cao, W. Liu, K. B. Reuter, M. Kuwahara, K. Misumi, A. J. Kellock, S. J. Chey, T. G. De Monsabert, A. Prabhakar, V. Deline, K. E. Fogel, Conf. Rec. IEEE Photovolt. Spec. Conf. 640 (2010).

  39. M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Thin Solid Films 519, 7403 (2011)

    Article  CAS  Google Scholar 

  40. M. Altosaar, J. Raudoja, K. Timmo, M. Danilson, M. Grossberg, J. Krustok, E. Mellikov, Phys. Status Solidi Appl. Mater. Sci. 205, 167 (2008)

    Article  CAS  Google Scholar 

  41. X. Fan, Z. Xing, Z. Shu, L. Zhang, L. Wang, J. Shi, RSC Adv. 5, 8323 (2015).

    Article  CAS  Google Scholar 

  42. W. Yang, H.S. Duan, B. Bob, H. Zhou, B. Lei, C.H. Chung, S.H. Li, W.W. Hou, Y. Yang, Adv. Mater. 24, 6323 (2012)

    Article  CAS  Google Scholar 

  43. J. He, L. Sun, S. Chen, Y. Chen, P. Yang, J. Chu, J. Alloys Compd. 511, 129 (2012)

    Article  CAS  Google Scholar 

  44. A. Khare, B. Himmetoglu, M. Cococcioni, E.S. Aydil, J. Appl. Phys. 111(8), 083707 (2012)

    Article  CAS  Google Scholar 

  45. H. Neumann, Helv. Phys. Acta 58, 337 (1985)

    CAS  Google Scholar 

  46. E.P. Zaretskaya, V.F. Gremenok, A.V. Stanchik, A.N. Pyatlitski, V.A. Solodukha, K.A. Urazov, M.B. Dergacheva, S. Özçelik, 33rd Eur Photovolt. Sol. Energy Conf. Exhib. Prop. (2017).

  47. D. Dumcenco, Y.S. Huang, Opt. Mater. (Amst). 35, 419 (2013)

    Article  CAS  Google Scholar 

  48. T. Gürel, C. Sevik, T. ÇaǧIn, Phys. Rev. B–Condens. Matter. Mater. Phys. (2011). https://doi.org/10.1103/PhysRevB.74.014302

    Article  Google Scholar 

  49. A. Redinger, D.M. Berg, P.J. Dale, S. Siebentritt, J. Am. Chem. Soc. 133, 3320 (2011)

    Article  CAS  Google Scholar 

  50. S.M. Iftiquar, J. Jung, H. Park, J. Cho, C. Shin, J. Park, J. Jung, S. Bong, S. Kim, J. Yi, Thin Solid Films 587, 117 (2015)

    Article  CAS  Google Scholar 

  51. S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Phys. Rev. B - Condens. Matter. Mater. Phys. 81, 35 (2010)

    Google Scholar 

  52. J. Kim, B. Shin, Electron. Mater. Lett. 13, 373 (2017)

    Article  CAS  Google Scholar 

  53. K. Pal, P. Singh, A. Bhaduri, K.B. Thapa, Sol. Energy Mater. Sol. Cells 196, 138 (2019)

    Article  CAS  Google Scholar 

  54. M.A. Olgar, A. Altuntepe, S. Erkan, R. Zan, J. Mol. Struct. 1230, 129922 (2021)

    Article  CAS  Google Scholar 

  55. N.J. Choudhari, Y. Raviprakash, F. Bellarmine, M.S. Ramachandra Rao, R. Pinto, Investigation on the sulfurization temperature dependent phase. Sol. Energy. 201, 348 (2020)

    Article  CAS  Google Scholar 

  56. D. K. Schroder, Semiconductor Material and Device Characterization, Third Edit (2006).

  57. R. Dhahri, M. Hjiri, L.E. Mir, A. Bonavita, D. Iannazzo, S.G. Leonardi, G. Neri, Appl. Surface Sci. 355, 1321 (2015)

    Article  CAS  Google Scholar 

  58. P. Bais, M.T. Caldes, C. Guillot-Deudon, A. Renaud, M. Boujtita, S. Jobic, A. Lafond, Mater. Res. Bull. (2021). https://doi.org/10.1016/j.materresbull.2021.111285

    Article  Google Scholar 

  59. M. Dimitrievska, A. Fairbrother, R. Gunder, G. Gurieva, H. Xie, E. Saucedo, A. Pérez-Rodríguez, V. Izquierdo-Roca, S. Schorr, Phys. Chem. Chem. Phys. 18, 8692 (2016)

    Article  CAS  Google Scholar 

  60. C. Malerba, F. Biccari, C. Leonor, A. Ricardo, M. Valentini, R. Chierchia, M. Müller, A. Santoni, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, J. Alloys Compd. 582, 528 (2014)

    Article  CAS  Google Scholar 

  61. B. Duan, J. Shi, D. Li, Y. Luo, H. Wu, Q. Meng, Sci. China Mater. 63, 2371 (2020)

    Article  CAS  Google Scholar 

  62. A.A. Ahmad, A.B. Migdadi, A.M. Alsaad, I.A. Qattan, Q.M. Al-Bataineh, A. Telfah, Computational and experimental characterizations of annealed Cu2ZnSnS4 thin films. Heliyon 8(1), 08683 (2022)

    Article  CAS  Google Scholar 

  63. J.A. Schmidt, M. Hundhausen, L. Ley, Phys. Rev. B Condens. Matter. Mater. Phys. 62, 13010 (2000)

    Article  CAS  Google Scholar 

  64. J. Chantana, Y. Kawano, T. Nishimura, A. Mavlonov, T. Minemoto, Sol. Energy Mater. Sol. Cells 210, 110502 (2020)

    Article  CAS  Google Scholar 

  65. M. Troviano, K. Taretto, Sol. Energy Mater. Sol. Cells 95, 821 (2011)

    Article  CAS  Google Scholar 

  66. E. A. D. Nevill Francis Mott, Electronic Processes in Non-Crystalline Materials, 2ndEdition ed. Oxford university Press, 2012.

  67. N.M. Shaalan, A.Z. Mahmoud, D. Hamad, Mater. Sci. Semicond. Process. 120, 105318 (2020)

    Article  CAS  Google Scholar 

  68. D.W. Miller, C.W. Warren, O. Gunawan, T. Gokmen, D.B. Mitzi, J.D. Cohen, Appl. Phys. Lett. 101(14), 142106 (2012)

    Article  CAS  Google Scholar 

  69. M.M. Islam, M.A. Halim, T. Sakurai, N. Sakai, T. Kato, H. Sugimoto, H. Tampo, H. Shibata, S. Niki, K. Akimoto, Appl. Phys. Lett. 106(24), 243905 (2015)

    Article  CAS  Google Scholar 

  70. C. Krammer, C. Huber, T. Schnabel, C. Zimmermann, M. Lang, E. Ahlswede, H. Kalt, and M. Hetterich, IEEE 42nd Photovolt. Spec. Conf. PVSC (2015)

  71. D. Huang, C. Persson, Thin Solid Films 535, 265 (2013)

    Article  CAS  Google Scholar 

  72. Jacques I. Pankove, Optical processes in semiconductors, Solid state physical electronic series, Prentice-Hall (1971)

  73. J.S.H. Wemple, M. DiDomenico, Phys. Rev. Lett. 23, 1156 (1969)

    Article  CAS  Google Scholar 

  74. S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    Article  CAS  Google Scholar 

  75. S.H. Wemple, M. DiDomenico, Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  76. A. Mahmoud, M. Echabaane, K. Omri, L. El Mir, R.B. Chaabane, J. Alloys Compd. 786, 960 (2019)

    Article  CAS  Google Scholar 

  77. Y. Zeng, G. Liang, P. Fan, Y. Xie, B. Fan, J. Hu, Z. Zheng, X. Zhang, J. Luo, D. Zhang, J. Mater. Sci. Mater. Electron. 28, 13763 (2017)

    Article  CAS  Google Scholar 

  78. J. Van Vechten, Phys. Rev. 182, 891 (1969)

    Article  Google Scholar 

  79. W.G. Spitzer, H.Y. Fan, Phys. Rev. 106, 882 (1957)

    Article  CAS  Google Scholar 

  80. A. Ziti, B. Hartiti, H. Labrim, S. Fadili, T. Nkuissi, H. Joel, A. Ridah, M. Tahri, P. Thevenin, Appl. Phys. (2019). https://doi.org/10.1007/s00339-019-2513-0

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by: (1) The Tunisian Ministry of Higher Education and Scientific Research through the budget of the Tunisian Laboratories (2) The University of Gabes through the funding of a scholarship to M. Jaouali and (3) The Algerian-Tunisian Research project 2019.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors conceived of the study design. MJ and MN contributed to conceptualization, methodology, investigation, data analysis, and original draft preparation. NI, AS and KM contributed to synthesis conceptualization and structural characterizations. MZ, AB and JEH textural characterizations data analysis and review. KD performed thin films deposition and reviewed the manuscript. LEM and ZBA performed the supervision, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to L. El Mir.

Ethics declarations

Conflict of interest

The authors declare the absence of all known competing financial interests or personal relationships which could influence this work.

Ethical approval

All procedures performed in the studies comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaouali, M., Nouiri, M., Ihzaz, N. et al. Effect of pre-deposition annealing on physical properties of CZTSSe thin films deposed by RF-sputtering based on nanoparticles synthesized by solvothermal technique. J Mater Sci: Mater Electron 33, 20867–20883 (2022). https://doi.org/10.1007/s10854-022-08895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08895-2

Navigation