Skip to main content
Log in

Investigation of structural, mechanical and magnetic characterization of electroplated W deposited NiMo thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the current research work, NiMo thin films were successfully co-deposited with W on the copper substrate (NiMoW) by varying the plating times like 30, 45, and 60 min at a constant current density (50 mA/cm2). All the electroplated NiMoW thin films have been subjected to structural (SEM–EDS and XRD), mechanical (hardness, roughness, and corrosion), and magnetic (VSM) characterization analysis. The existence of a perfect nanocrystalline phase in the coated NiMoW thin films was found through XRD, and the average crystalline size varied from 33 to 37 nm. All the coated NiMoW thin films have a cubic (FCC) crystalline structure with an Fm-3m (225) space group. The obtained SEM–EDS result discloses that the synthesized NiMoW thin films have uniform surface morphology with spherically shaped nanoclusters, and the film deposited at 60 min has the maximum nickel content as compared with coatings at 30 min which in turn enhance the corrosion resistance and magnetic nature of NiMoW coatings and also reveals the NiMoW thin films coated at 30 and 45 min have almost equal W and Mo content. The thickness of synthesized NiMoW thin films was found to be varied from 5 to 15 µm using Metallurgical Microscope (OIAL/MMN/MET/01). The coatings were found to be strongly adherent with a substrate (Cu) and the NiMoW coatings at 60 min exhibited the highest hardness value of 293 VHN. The electrochemical studies of NiMoW thin films explored that the coatings synthesized at 60 min exhibited the highest corrosion resistance value of 635.18 K Ω (low corrosion rate of 0.6861 mm/year). All the electroplated NiMoW coatings have an average roughness (Ra) value of around 185 nm, and the roughness values were calculated using a profilometer. The magnetic investigation on NiMoW thin layers through VSM shows that the coatings at 60 min exhibited the nanocrystalline soft ferromagnetic nature with a lower coercivity of 106.94 Oe and saturation magnetization of 925.80 × 10–6 emu. The analysis concluded that the NiMoW thin films coated at 60 min exhibited better mechanical and magnetic properties than coatings at 30 and 45 min of deposition time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

References

  1. T. Matsuda, R. Saeki, M. Hayashida, T. Ohgai, Microhardness and heat-resistance performance of ferromagnetic cobalt–molybdenum nanocrystals electrodeposited from an aqueous solution containing citric acid. Mater. Res. Express 9, 046502 (2022). https://doi.org/10.1088/2053-1591/ac60e3

    Article  Google Scholar 

  2. G.Y. Mukhamedova, M. Ved, N. Sakhnenko, T. Nenastina, Electrodeposition and properties of binary and ternary cobalt alloys with molybdenum and tungsten. Appl. Surf. Sci. 445(1), 298–307 (2018). https://doi.org/10.1016/j.apsusc.2018.03.171

    Article  CAS  Google Scholar 

  3. Y. Messaoudi, N. Fenineche, A. Guittoum et al., A study on electrodeposited Co–Mo alloys thin films. J. Mater. Sci.: Mater. Electron. 24, 2962–2969 (2013). https://doi.org/10.1007/s10854-013-1198-y

    Article  CAS  Google Scholar 

  4. P. de Lima-Neto, A.N. Correia, G.L. Vaz, P.N.S. Casciano, Morphological, structural, microhardness and corrosion characterisations of electrodeposited Ni–Mo and Cr coatings. J. Braz. Chem. Soc. 21(10), 1968–1976 (2010). https://doi.org/10.1590/S0103-50532010001000024

    Article  Google Scholar 

  5. P.-C. Huang, K.-H. Hou, H.-H. Sheu, M.-D. Ger, G.-L. Wang, Wear properties of Ni–Mo coatings produced by pulse electroforming. Surf. Coat. Technol. 258(15), 639–645 (2014). https://doi.org/10.1016/j.surfcoat.2014.08.024

    Article  CAS  Google Scholar 

  6. U.M. Gurbanova, R.G. Huseynova, H.M. Tahirli, S.D. Dadashova, A.S. Aliyev, D.B. Tagiyev, Electrodeposition of Ni–Mo alloys from ammonium electrolytes. Azerbaijan Chem. J. (2019). https://doi.org/10.32737/0005-2531-2019-3-25-31

    Article  Google Scholar 

  7. J. Halim, R. Abdel-Karim, S. El-Raghy, M. Nabil, A. Waheed, Electrodeposition and characterization of nanocrystalline Ni–Mo catalysts for hydrogen production. J. Nanomater. (2012). https://doi.org/10.1155/2012/845673

    Article  Google Scholar 

  8. P. Prioteasa, L. Anicai, T. Visan, Synthesis and corrosion characterization of electrodeposited Ni–Mo alloys obtained from aqueous solutions. UPB Sci. Bull. Ser. B 72(4), 11–23 (2010)

    CAS  Google Scholar 

  9. P.C. Huang, K.H. Hou, G.L. Wang, M.L. Chen, M.L. Wang, Corrosion resistance of the Ni–Mo alloy coatings related to coating’s electroplating parameters. Int. J. Electrochem. Sci. 10, 4972–4984 (2015)

    CAS  Google Scholar 

  10. P.N.S. Casciano, R.L. Benevides, P. de Lima-Neto, A.N. Correia, Corrosion resistance of electrodeposited Ni–Mo–W coatings. Int. J. Electrochem. Sci. 9, 4413–4428 (2014)

    Google Scholar 

  11. E. Gómez, E. Pellicer, E. Vallés, Influence of the bath composition and the pH on the induced cobalt–molybdenum electrodeposition. J. Electroanal. Chem. 556, 137–145 (2003). https://doi.org/10.1016/S0022-0728(03)00339-5

    Article  CAS  Google Scholar 

  12. E.J. Podlaha, D. Landolt, Induced co-deposition: an experimental investigation of Ni–Mo alloys. Electrochem. Soc. 143(3), 885 (1996)

    Article  CAS  Google Scholar 

  13. A. Dash, M. Kumar, J. Udhayakumar, S.S. Gandhi, A.K. Satpati, J. Nuwad, R. Sukla, C.G.S. Pillai, M. Venkatesh, V. Venugopal, On the application of electrochemical techniques for the preparation of 57Co source core, encapsulation and quality evaluation for radiometric assay of nuclear fuel rods. Radiochim. Acta 99, 1–9 (2011). https://doi.org/10.1524/ract.2011.1799

    Article  CAS  Google Scholar 

  14. A. Bigos, E. Beltowska-Lehman, E. García-Lecina, M. Bieda, M.J. Szczerba, J. Morgiel, Ultrasound-assisted electrodeposition of Ni and Ni–Mo coatings from a citrate-ammonia electrolyte solution. J. Alloys Compd. 726(5), 410–416 (2017). https://doi.org/10.1016/j.jallcom.2017.07.300

    Article  CAS  Google Scholar 

  15. R. Kannan, P. Devaki, P.S. Premkumar, M. Selvambikai, Effect of tungsten (W) on structural and magnetic properties of electroplated NiFe thin films for MEMS applications. Mater. Res. Express 5(4), 046414 (2018). https://doi.org/10.1088/2053-1591/aabddd

    Article  CAS  Google Scholar 

  16. R. Kannan, R. Kanagaraj, S. Ganesan, Influence of tri sodium citrate bath concentration on the electro deposition of Ni–Fe–WS thin films. J. Ovonic Res. 9(2), 45–54 (2013)

    CAS  Google Scholar 

  17. A. Kalaivani, G. Senguttuvan, R. Kannan, Structural, mechanical and magnetic study on galvanostatic electroplated nanocrystalline NiFeP thin films. Mater. Res. Express 5(3), 036404 (2018). https://doi.org/10.1088/2053-1591/aab37a

    Article  CAS  Google Scholar 

  18. R. Kannan, S. Ganesan, T.M. Selvakumari, Synthesis and characterization of nano crystalline NiFeWS thin films in diammonium citrate bath. Dig. J. Nanomater. Biostruct. 7(3), 1039–1050 (2012)

    Google Scholar 

  19. S.H. Mohamed, N.M.A. Hadia, M.A. Awad, M.I. Hafez, Study of the effects of both film thickness and annealing time on CuxSyOz thin films for the possibility of usage as solar control coatings. Appl. Phys. A 125, 587 (2019). https://doi.org/10.1007/s00339-019-2893-1

    Article  CAS  Google Scholar 

  20. S.H. Mohamed, M. El-Hagary, S. Althoyaib, Growth of undoped and Fe doped TiO2 nanostructures and their optical and photocatalytic properties. Appl. Phys. A 111, 1207–1212 (2013). https://doi.org/10.1007/s00339-012-7367-7

    Article  CAS  Google Scholar 

  21. X. Liu, S.H. Mohamed, J.M. Ngaruiya, M. Wuttig, T. Michely, Modifying the growth of organic thin films by a self-assembled monolayer. J. Appl. Phys. 93, 4852 (2003). https://doi.org/10.1063/1.1559935

    Article  CAS  Google Scholar 

  22. M. Allam, M. Benaicha, A. Dakhouche, Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis. Int. J. Hydrogen Energy 43(6), 3394–3405 (2018). https://doi.org/10.1016/j.ijhydene.2017.08.012

    Article  CAS  Google Scholar 

  23. L. Elias, K. Scott, A.C. Hegde, Electrolytic synthesis and characterization of electrocatalytic Ni–W alloy. J. Mater. Eng. Perform. 24(11), 4182–4191 (2015). https://doi.org/10.1007/s11665-015-1710-z

    Article  CAS  Google Scholar 

  24. S. Costovici, A.C. Manea, T. Visan, L. Anicai, Investigation of Ni–Mo and Co–Mo alloys electrodeposition involving choline chloride based ionic liquids. Electrochim. Acta 207, 97–111 (2016). https://doi.org/10.1016/j.electacta.2016.04.173

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors of the current manuscript contributed equally.

Corresponding author

Correspondence to E. Ranjith Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest to the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananthi, S., Senthil, T.S., Kannan, R. et al. Investigation of structural, mechanical and magnetic characterization of electroplated W deposited NiMo thin films. J Mater Sci: Mater Electron 33, 20855–20866 (2022). https://doi.org/10.1007/s10854-022-08894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08894-3

Navigation