Skip to main content

Advertisement

Log in

Fabrication of copper oxide-based dye-sensitized solar cell with high short-circuit current density (JSC) using flexible and binder-free porous photoelectrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fabrication of flexible p-type dye-sensitized solar cells with large short-circuit current (JSC) and open circuit voltage (VOC) is still a challenging problem. In this context, we report the construction and testing of a p-type dye-sensitized solar cell (DSSC) based on a porous Cu2O thin film on copper substrate as a free-binder photoelectrode, using P1 dye and an electrolyte based on the I3/I redox couple. A simple and low-cost hydrothermal method is proposed using ethyl cellulose or polyvinylpyrrolidone as a surfactant to synthesize the porous Cu2O thin film on copper substrate. The best cell yielded a high short-circuit current density JSC of 11.7 mA cm−2, an open-circuit voltage VOC of 0.502 V and a power conversion efficiency η of 1.32% under 1 sun. The porous structure of the Cu2O film caused by ethyl cellulose is responsible for the high JSC, providing the high dye loading capacity of the DSSC due to their large specific surface areas and highly efficient visible light-harvesting ability. Even if further improvement is requested, the high short-circuit current density value highlighted that this flexible photocathode could be considered an interesting candidate for the development of flexible p-type or tandem dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Chem. Commun. (Camb) 51, 15894 (2015). https://doi.org/10.1039/c5cc06759f

    Article  CAS  Google Scholar 

  2. M. Bonomo, D. Dini, Energies 9, 373 (2016). https://doi.org/10.3390/en9050373

    Article  CAS  Google Scholar 

  3. U. Daniel, D. Anamaria, I. Sebarchievicia, M. Miclau, Energy Procedia 112, 497 (2017). https://doi.org/10.1016/j.egypro.2017.03.1129

    Article  CAS  Google Scholar 

  4. M. Miclau, A. Dabici, M. Vajda, D. Ursu, Mater. Lett. 216, 119 (2018). https://doi.org/10.1016/j.matlet.2017.12.137

    Article  CAS  Google Scholar 

  5. M. Miclau, N. Miclau, R. Banica, D. Ursu, Mater. Today 4, 6975 (2017). https://doi.org/10.1016/j.matpr.2017.07.027

    Article  Google Scholar 

  6. D. Ursu, M. Miclau, R. Banica, N. Vaszilcsin, Mater. Lett. 143, 91 (2015). https://doi.org/10.1016/j.matlet.2014.12.081

    Article  CAS  Google Scholar 

  7. D. Ursu, M. Vajda, M. Miclau, J. Alloys Compd. 802, 86 (2019). https://doi.org/10.1016/j.jallcom.2019.06.180

    Article  CAS  Google Scholar 

  8. D. Ursu, N. Vaszilcsin, R. Bănica, M. Miclau, J. Mater. Eng. Perform. 25, 59 (2015). https://doi.org/10.1007/s11665-015-1814-5

    Article  CAS  Google Scholar 

  9. M. Vajda, D. Ursu, N. Duteanu, M. Miclau, Mater. Lett. 275, 128151 (2020). https://doi.org/10.1016/j.matlet.2020.128151

    Article  CAS  Google Scholar 

  10. M. Vajda, D. Ursu, C. Mosoarca, N. Duteanu, M. Miclau, Int. J. Energy Res. 45, 5309 (2020). https://doi.org/10.1002/er.6153

    Article  CAS  Google Scholar 

  11. X.L. Zhang, Z. Zhang, D. Chen, P. Bauerle, U. Bach, Y.B. Cheng, Chem. Commun. (Camb) 48, 9885 (2012). https://doi.org/10.1039/c2cc35018a

    Article  CAS  Google Scholar 

  12. H.J. Snaith, Adv. Funct. Mater. 20, 13 (2010). https://doi.org/10.1002/adfm.200901476

    Article  CAS  Google Scholar 

  13. S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Energy Environ. Sci. 13, 685 (2020). https://doi.org/10.1039/c9ee03046h

    Article  CAS  Google Scholar 

  14. K. Fukuda, K. Yu, T. Someya, Adv. Energy Mater. 10, 2000765 (2020). https://doi.org/10.1002/aenm.202000765

    Article  CAS  Google Scholar 

  15. X. Li, P. Li, Z. Wu, D. Luo, H.-Y. Yu, Z.-H. Lu, Mater. Rep. 1, 100001 (2020). https://doi.org/10.1016/j.matre.2020.09.001

    Article  Google Scholar 

  16. G.V. Belessiotis, I. Ibrahim, C.S. Karagianni, P. Falaras, SVOA Mater. Sci. Technol. 3, 01 (2020)

    Google Scholar 

  17. M. Kokkonen et al., J. Mater. Chem. A 9, 10527 (2021). https://doi.org/10.1039/d1ta00690h

    Article  CAS  Google Scholar 

  18. J.H. Ri, S. Wu, J. Jin, T. Peng, B. Kim, K.S. Sonu, Electrochim. Acta 247, 754 (2017). https://doi.org/10.1016/j.electacta.2017.07.035

    Article  CAS  Google Scholar 

  19. M. Sabet, H. Jahangiri, J. Mater. Sci. 28, 6566 (2017). https://doi.org/10.1007/s10854-017-6346-3

    Article  CAS  Google Scholar 

  20. S. Ito, N.L. Ha, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Pechy, M.K. Nazeeruddin, M. Gratzel, Chem. Commun. (Camb.) (2006). https://doi.org/10.1039/b608279c

    Article  Google Scholar 

  21. R. Gao, Y. Cui, X. Liu, L. Wang, G. Cao, J. Mater. Chem. A 2, 4765 (2014). https://doi.org/10.1039/c3ta15276f

    Article  CAS  Google Scholar 

  22. Z. Yang, T. Xu, Y. Ito, U. Welp, W.K. Kwok, J. Phys. Chem. C 113, 20521 (2009)

    Article  CAS  Google Scholar 

  23. N.M. Rashid, N. Kishi, T. Soga, Mater. Res. Bull. 77, 126 (2016). https://doi.org/10.1016/j.materresbull.2016.01.028

    Article  CAS  Google Scholar 

  24. M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, Chem. Lett. 34, 804 (2005). https://doi.org/10.1246/cl.2005.804

    Article  CAS  Google Scholar 

  25. J.S. Kang et al., ACS Appl. Energy Mater. 1, 4178 (2018). https://doi.org/10.1021/acsaem.8b00834

    Article  CAS  Google Scholar 

  26. Y.-T. Huang, S.-P. Feng, C.-M. Chen, Electrochim. Acta 99, 230 (2013). https://doi.org/10.1016/j.electacta.2013.03.126

    Article  CAS  Google Scholar 

  27. S. Du, P. Cheng, P. Sun, B. Wang, Y. Cai, F. Liu, J. Zheng, G. Lu, Chem. Res. Chin. Univ. 30, 661 (2014). https://doi.org/10.1007/s40242-014-4020-3

    Article  CAS  Google Scholar 

  28. R.P. Wijesundera, M. Hidaka, K. Koga, M. Sakai, W. Siripala, Thin Solid Films 500, 241 (2006). https://doi.org/10.1016/j.tsf.2005.11.023

    Article  CAS  Google Scholar 

  29. S.-M. Chang, C.-L. Lin, Y.-J. Chen, H.-C. Wang, W.-C. Chang, L.-Y. Lin, Org. Electron. 25, 254 (2015). https://doi.org/10.1016/j.orgel.2015.06.041

    Article  CAS  Google Scholar 

  30. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  31. H. Jin, W. Zhou, J. Cao, S.D. Stoyanov, T.B.J. Blijdenstein, P.W.N. de Groot, L.N. Arnaudov, E.G. Pelan, Soft Matter 8, 2194 (2012). https://doi.org/10.1039/c1sm06518a

    Article  CAS  Google Scholar 

  32. T. Sander, C.T. Reindl, M. Giar, B. Eifert, M. Heinemann, C. Heiliger, P.J. Klar, Phys. Rev. B 90, 045203 (2014). https://doi.org/10.1103/PhysRevB.90.045203

    Article  CAS  Google Scholar 

  33. M. Ivanda, Handbook of Porous Silicon (Springer, Cham, 2016), p.1

    Book  Google Scholar 

  34. P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948). https://doi.org/10.1364/JOSA.38.000448

    Article  CAS  Google Scholar 

  35. T.K.S. Wong, S. Zhuk, S. Masudy-Panah, G.K. Dalapati, Materials (Basel) 9, 271 (2016). https://doi.org/10.3390/ma9040271

    Article  CAS  Google Scholar 

  36. K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84, 685 (2007)

    Article  CAS  Google Scholar 

  37. Z. Zhang, P. Wang, J. Mater. Chem. 22, 2456 (2012). https://doi.org/10.1039/c1jm14478b

    Article  CAS  Google Scholar 

  38. Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6, 35158 (2016). https://doi.org/10.1038/srep35158

    Article  CAS  Google Scholar 

  39. J. Hodby, T. Jenkins, C. Schwab, H. Tamura, D. Trivich, J. Phys. C 9, 1429 (1976). https://doi.org/10.1088/0022-3719/9/8/014

    Article  CAS  Google Scholar 

  40. L. Chen, Y. Honsho, S. Seki, D. Jiang, J. Am. Chem. Soc. 132(19), 6742 (2010)

    Article  CAS  Google Scholar 

  41. S. Sarker, H.W. Seo, D.M. Kim, J. Power Sources 248, 739 (2014). https://doi.org/10.1016/j.jpowsour.2013.09.101

    Article  CAS  Google Scholar 

  42. R. Guliani, A. Jain, A. Kapoor, Open Renew. Energy J. 5, 49 (2012)

    Article  CAS  Google Scholar 

  43. H. Zhai, R. Wang, W. Wang, X. Wang, Y. Cheng, L. Shi, Y. Liu, J. Sun, Nano Res. 8, 3205 (2015). https://doi.org/10.1007/s12274-015-0820-0

    Article  CAS  Google Scholar 

  44. F. Shao, J. Sun, L. Gao, J. Luo, Y. Liu, S. Yang, Adv. Funct. Mater. 22, 3907 (2012). https://doi.org/10.1002/adfm.201200365

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, the Project Number PN-III-P2-2.1-PED-2019-2091.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to Marinela Miclau.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Authors confirm their compliance with ethical standard.

Informed consent

All authors confirm their participation in this paper.

Consent for publication

All authors accept the publication rules applied by the journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vajda, M., Ursu, D., Miclau, N. et al. Fabrication of copper oxide-based dye-sensitized solar cell with high short-circuit current density (JSC) using flexible and binder-free porous photoelectrode. J Mater Sci: Mater Electron 33, 20790–20801 (2022). https://doi.org/10.1007/s10854-022-08888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08888-1

Navigation