Skip to main content

Advertisement

Log in

Development of solvate ionic liquid immobilized MCM-41 ionogel electrolytes for lithium battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Compared to liquid electrolytes, solid electrolytes have shown better performance on safety requirements and energy densities. However, the further application of solid electrolytes is still limited due to the large interface resistance between electrolyte and electrode. In this study, a quasi-solid electrolyte prepared by ordered mesoporous MCM-41 (Mobil Composition of Matter No. 41) was developed to solve this problem. For this electrolyte, the solvated ionic liquids could be immobilized within inorganic mesoporous material by coupled molecular sieve. The electrochemical characteristics, including lithium-ion conductivity at ambient temperature, ion mobility, resistance for lithium dendrite, corrosion resistance, and interfacial resistance between electrolyte and electrode were all improved significantly. This resulted in enhanced electrochemical performance, including high room temperature lithium-ion conductivity, improved ion migration number, enhanced lithium dendrite resistance, good corrosion resistance, and low interfacial resistance between electrolyte and electrode. Moreover, the long shelf life of the prepared electrolytes, of over 1 year, increases the product’s convenience and provides an opportunity. The assembly cell of Li|LiFePO4 displayed discharge capacity of 126 mAh/g with capacity retention of 88% after more than 1500 cycles, demonstrating high electrochemical performance and promising application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the finding of this study are available from the corresponding author upon reasonable request.

References

  1. N. Chen, H. Zhang, L. Li, R. Chen, S. Guo, Adv. Energy Mater. 8, 1702675 (2018)

    Article  CAS  Google Scholar 

  2. X. Chen, W. He, L. Ding, S. Wang, H. Wang, Energy Environ. Sci. 12, 938–944 (2019)

    Article  CAS  Google Scholar 

  3. K. Deng, Q. Zeng, D. Wang, Z. Liu, G. Wang, Z. Qiu, Y. Zhang, M. Xiao, Y. Meng, Energy Storage Mater. 32, 425–447 (2020)

    Article  Google Scholar 

  4. J. Kalhoff, G.G. Eshetu, D. Bresser, S. Passerini, ChemSusChem 8, 2154–2175 (2015)

    Article  CAS  Google Scholar 

  5. S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Chem 5, 753–785 (2019)

    Article  CAS  Google Scholar 

  6. M. Watanabe, K. Dokko, K. Ueno, M.L. Thomas, Bull. Chem. Soc. Jpn. 91, 1660–1682 (2018)

    Article  CAS  Google Scholar 

  7. K. Xu, Chem. Rev. 114, 11503–11618 (2014)

    Article  CAS  Google Scholar 

  8. S. Chereddy, J. Aguirre, D. Dikin, S.L. Wunder, P.R. Chinnam, ACS Appl. Energy Mater. 3, 279–289 (2020)

    Article  CAS  Google Scholar 

  9. Y. Cao, P. Zuo, S. Lou, Z. Sun, Q. Li, H. Huo, Y. Ma, C. Du, Y. Gao, G. Yin, J. Mater. Chem. A 7, 6533–6542 (2019)

    Article  CAS  Google Scholar 

  10. J.B. Park, S.H. Lee, H.-G. Jung, D. Aurbach, Y.-K. Sun, Adv. Mater. 30, 1704162 (2018)

    Article  CAS  Google Scholar 

  11. X. Cheng, C. Zhao, Y. Yao, H. Liu, Q. Zhang, Chem 5, 74–96 (2019)

    Article  CAS  Google Scholar 

  12. F. Ye, K. Liao, R. Ran, Z. Shao, Energy Fuels 34, 9189–9207 (2020)

    Article  CAS  Google Scholar 

  13. S.K. Singh, L. Shalu, H. Balo, V.K. Gupta, A.K. Singh, Y.L. Tripathi, R.K. Verma, Singh, Energy 150, 890–900 (2018)

    Article  CAS  Google Scholar 

  14. A. Manuel Stephan, Eur. Polym. J. 42, 21–42 (2006)

    Article  CAS  Google Scholar 

  15. W.J. Hyun, C.M. Thomas, M.C. Hersam, Adv. Energy Mater. 10, 2002135 (2020)

    Article  CAS  Google Scholar 

  16. J. Le Bideau, L. Viau, A. Vioux, Chem. Soc. Rev. 40, 907–925 (2011)

    Article  Google Scholar 

  17. F. Wu, N. Chen, R. Chen, Q. Zhu, G. Tan, L. Li, Adv. Sci. 3, 1500306 (2016)

    Article  CAS  Google Scholar 

  18. X. Li, S. Li, Z. Zhang, J. Huang, L. Yang, S. Hirano, J. Mater. Chem. A 4, 13822–13829 (2016)

    Article  CAS  Google Scholar 

  19. Y. Lu, S.K. Das, S.S. Moganty, L.A. Archer, Adv. Mater. 24, 4430–4435 (2012)

    Article  CAS  Google Scholar 

  20. A.K. Tripathi, Mater. Today Energy 20, 100643 (2021)

    Article  CAS  Google Scholar 

  21. F. Wu, N. Chen, R. Chen, Q. Zhu, J. Qian, L. Li, Chem. Mater. 28, 848–856 (2016)

    Article  CAS  Google Scholar 

  22. A.K. Tripathi, R.K. Singh, J. Energy Storage 15, 283–291 (2018)

    Article  Google Scholar 

  23. A.K. Tripathi, Y.L. Verma, V.K. Shalu, L. Singh, H. Balo, S.K. Gupta, R.K. Singh, Singh, J. Solid State Electrochem. 21, 3365–3371 (2017)

    Article  CAS  Google Scholar 

  24. V. Elumalai, T. Ganesh, C. Selvakumar, D. Sangeetha, Mater. Sci. Energy Technol. 1, 196–204 (2018)

    Google Scholar 

  25. Z. Wang, Z. Wang, L. Yang, H. Wang, Y. Song, L. Han, K. Yang, J. Hu, H. Chen, F. Pan, Nano Energy 49, 580–587 (2018)

    Article  CAS  Google Scholar 

  26. Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu, H. Chen, F. Pan, Adv. Mater. 30, 1704436 (2017)

    Article  CAS  Google Scholar 

  27. K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, J. Am. Chem. Soc. 133, 13121–13129 (2011)

    Article  CAS  Google Scholar 

  28. M. Galiński, A. Lewandowski, I. Stępniak, Electrochim. Acta 51, 5567–5580 (2006)

    Article  CAS  Google Scholar 

  29. J. Asenbauer, N. Ben Hassen, B.D. McCloskey, J.M. Prausnitz, Electrochim. Acta 247, 1038–1043 (2017)

    Article  CAS  Google Scholar 

  30. A.K. Tripathi, Y.L. Verma, R.K. Singh, J. Mater. Chem. A 3, 23809–23820 (2015)

    Article  CAS  Google Scholar 

  31. K.S.W. Sing, Pure Appl. Chem. 57, 603–619 (1985)

    Article  CAS  Google Scholar 

  32. D. Blanchard, A. Nale, D. Sveinbjörnsson, T.M. Eggenhuisen, M.H.W. Verkuijlen, T. Suwarno, A.P.M. Vegge, P.E. Kentgens, de Jongh, Adv. Funct. Mater. 25, 184–192 (2015)

    Article  CAS  Google Scholar 

  33. P. Bonnick, K. Niitani, M. Nose, K. Suto, T.S. Arthur, J. Muldoon, J. Mater. Chem. A 7, 24173–24179 (2019)

    Article  CAS  Google Scholar 

  34. Q. Zhao, X. Liu, S. Stalin, K. Khan, L.A. Archer, Nat. Energy 4, 365–373 (2019)

    Article  CAS  Google Scholar 

  35. R.S. Kühnel, A. Balducci, J. Power Sources 249, 163–171 (2014)

    Article  CAS  Google Scholar 

  36. M. Morita, T. Shibata, N. Yoshimoto, M. Ishikawa, J. Power Sources 119–121, 784–788 (2003)

    Article  CAS  Google Scholar 

  37. P. Meister, X. Qi, R. Kloepsch, E. Krämer, B. Streipert, M. Winter, T. Placke, ChemSusChem 10, 804–814 (2017)

    Article  CAS  Google Scholar 

  38. X. Wang, E. Yasukawa, S. Mori, Electrochim. Acta 45, 2677–2684 (2000)

    Article  CAS  Google Scholar 

  39. P.G. Bruce, J. Evans, C.A. Vincent, Solid State Ionics 28–30, 918–922 (1988)

    Article  Google Scholar 

  40. J. Evans, C.A. Vincent, P.G. Bruce, Polymer 28, 2324–2328 (1987)

    Article  CAS  Google Scholar 

  41. Y. Lu, K. Korf, Y. Kambe, Z. Tu, L.A. Archer, Angew Chem. Int. Ed. 53, 488–492 (2014)

    Article  CAS  Google Scholar 

  42. M. Kerner, N. Plylahan, J. Scheers, P. Johansson, Phys. Chem. Chem. Phys. 17, 19569–19581 (2015)

    Article  CAS  Google Scholar 

  43. F. Wu, G. Tan, R. Chen, L. Li, J. Xiang, Y. Zheng, Adv. Mater. 23, 5081–5085 (2011)

    Article  CAS  Google Scholar 

  44. L.J. Krause, W. Lamanna, J. Summerfield, M. Engle, G. Korba, R. Loch, R. Atanasoski, J. Power Sources 68, 320–325 (1997)

    Article  CAS  Google Scholar 

  45. K. Kanamura, J. Power Sources 81–82, 123–129 (1999)

    Article  Google Scholar 

  46. M. Wetjen, M.A. Navarra, S. Panero, S. Passerini, B. Scrosati, J. Hassoun, ChemSusChem 6, 1037–1043 (2013)

    Article  CAS  Google Scholar 

  47. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4270 (2004)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by entrepreneurial Program of Foshan National Hi-tech Industrial Development Zone.

Author information

Authors and Affiliations

Authors

Contributions

SL was responsible for the experimental testing, writing and design of the article. JC was responsible for experimental testing. WZ was responsible for the collection of data, and ZL was responsible for the making of schematic diagrams. BX was responsible for characterization tests. ZD was responsible for correcting information. HH was responsible for the design and control of the article. The first draft of the manuscript was written by SL and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Heming He.

Ethics declarations

Conflict of interest

The authors declare that they have no interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2243.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Cai, J., Zheng, W. et al. Development of solvate ionic liquid immobilized MCM-41 ionogel electrolytes for lithium battery. J Mater Sci: Mater Electron 33, 18621–18631 (2022). https://doi.org/10.1007/s10854-022-08713-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08713-9

Navigation