Skip to main content

Advertisement

Log in

ZnS-PANI nanocomposite with enhanced electrochemical performances for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple two-step method of coprecipitation followed by polymerization successfully yielded ZnS-PANI nanocomposite. This composite was characterized using XRD, FTIR, SEM, BET, and XPS. The results indicate that the morphology of the ZnS-PANI nanocomposite possesses a uniform spherical shape. The ZnS-PANI electrode shows an excellent initial discharge capacity of 1182.1 mAh/g, a high discharge capacity of 693.5 mAh/g at a current rate of 0.1 °C after 500 cycles, good cycling stability, and an excellent rate capability of 673 mAh/g at 2.0 °C, when used as anode materials for lithium-ion batteries (LIBs). The excellent electrochemical performances make the nanosized ZnS-PANI nanocomposite a promising candidate for the LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. G.G. Eshetu, H. Zhang, X. Judez, H. Adenusi, M. Armand, S. Passerini et al., Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat. Commun. 12(1), 5459 (2021)

    Article  CAS  Google Scholar 

  2. T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7(7), 2942–2964 (2019)

    Article  CAS  Google Scholar 

  3. J. Han, H. Jang, H. Thi Bui, M. Jahn, D. Ahn, K. Cho et al., Stable performance of Li-S battery: engineering of Li2S smart cathode by reduction of multilayer graphene-embedded 2D-MoS2. J. Alloys Compd. 862, 158031 (2021)

    Article  CAS  Google Scholar 

  4. H.T. Bui, H. Jang, D. Ahn, J. Han, M. Sung, V. Kutwade et al., High-performance Li–Se battery: Li2Se cathode as intercalation product of electrochemical in situ reduction of multilayer graphene-embedded 2D-MoSe2. Electrochim. Acta 368, 137556 (2021)

    Article  CAS  Google Scholar 

  5. L. Lu, L. Jing, Z. Yang, G. Yang, C. Wang, J. Wang et al., One-step in situ growth of ZnS nanoparticles on reduced graphene oxides and their improved lithium storage performance using sodium carboxymethyl cellulose binder. RSC Adv. 8(17), 9125–9133 (2018)

    Article  CAS  Google Scholar 

  6. Q.H. Nguyen, T. Park, J. Hur, Enhanced cycle stability of zinc sulfide anode for high-performance lithium-ion storage: effect of conductive hybrid matrix on active ZnS. Nanomaterials 9(9), 1221 (2019)

    Article  CAS  Google Scholar 

  7. G. Tian, Z. Zhao, A. Sarapulova, C. Das, L. Zhu, S. Liu et al., Understanding the Li-ion storage mechanism in a carbon composited zinc sulfide electrode. J. Mater. Chem. A 7(26), 15640–15653 (2019)

    Article  CAS  Google Scholar 

  8. Y.L. Yin, C.H. Liu, S.S. Fan, A new type of secondary hybrid battery showing excellent performances. Nano Energy 12, 486–493 (2015)

    Article  CAS  Google Scholar 

  9. F. Ye, B.T. Zhao, R. Ran, Z.P. Shao, A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries. J. Power Sour. 290, 61–70 (2015)

    Article  CAS  Google Scholar 

  10. B. Cao, H. Liu, X. Zhang, P. Zhang, Q.Z. Zhu, H.L. Du et al., MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance. Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00728-x

    Article  Google Scholar 

  11. H.M. Chen, J.J. Zhou, Q. Li, S.H. Zhao, X.B. Yu, K. Tao et al., MOF-assisted construction of a Co9S8@Ni3S2/ZnS microplate array with ultrahigh areal specific capacity for advanced supercapattery. Dalton Trans. 49(30), 10535–10544 (2020)

    Article  CAS  Google Scholar 

  12. W.W. Sun, X.C. Tao, P.P. Du, Y. Wang, Carbon-coated mixed-metal sulfide hierarchical structure: MOF-derived synthesis and lithium-storage performances. Chem. Eng. J. 366, 622–630 (2019)

    Article  CAS  Google Scholar 

  13. Y. Luo, R. Guo, T. Li, F. Li, Z. Liu, M. Zheng et al., Application of polyaniline for li-ion batteries, lithium-sulfur batteries, and supercapacitors. Chemsuschem 12(8), 1591–1611 (2019)

    Article  CAS  Google Scholar 

  14. S.H. Mohamed, M. El-Hagary, M. Emam-Ismail, Thickness and annealing effects on the optoelectronic properties of ZnS films. J. Phys. D Appl. Phys. 43(7), 075401 (2010)

    Article  Google Scholar 

  15. D.A. Tonpe, K.P. Gattu, V.V. Kutwade, M.E. Sonawane, A.S. Dive, R. Sharma, Development of organic/inorganic PANI/ZnO 1D nanostructured hybrid thin film solar cell by soft chemical route. J. Mater. Sci.: Mater. Electron. 30(17), 16056–16064 (2019)

    CAS  Google Scholar 

  16. K.R. Bindu, S.A. Kumar, M. Anilkumar, E.I. Anila, Highly luminescent ZnS: Mn quantum dots capped with aloe vera extract. Solid State Commun. 323, 114106 (2021)

    Article  CAS  Google Scholar 

  17. D.V. Dake, N.D. Raskar, V.A. Mane, R.B. Sonpir, E. Stathatos, K. Asokan et al., Exploring the role of defects on diverse properties of Cr-substituted ZnS nanostructures for photocatalytic applications. Appl. Phys. A 126(8), 640 (2020)

    Article  CAS  Google Scholar 

  18. A. Korent, K. Žagar Soderžnik, S. Šturm, K. Žužek Rožman, N. Redon, J.-L. Wojkiewicz et al., Facile fabrication of an ammonia-gas sensor using electrochemically synthesised polyaniline on commercial screen-printed three-electrode systems. Sensors 21(1), 169 (2021)

    Article  CAS  Google Scholar 

  19. C.J. Chang, K.W. Chu, ZnS/polyaniline composites with improved dispersing stability and high photocatalytic hydrogen production activity. Int. J. Hydrogen Energy 41(46), 21764–21773 (2016)

    Article  CAS  Google Scholar 

  20. F. Ambroz, T.J. Macdonald, V. Martis, I.P. Parkin, Evaluation of the BET theory for the characterization of meso and microporous MOFs. Small Methods 2(11), 1800173 (2018)

    Article  Google Scholar 

  21. Z.C. Xu, Z.Q. Zhang, M.Y. Li, H.L. Yin, H.T. Lin, J. Zhou et al., Three-dimensional ZnS/reduced graphene oxide/polypyrrole composite for high-performance supercapacitors and lithium-ion battery electrode material. J. Solid State Electrochem. 23(12), 3419–3428 (2019)

    Article  CAS  Google Scholar 

  22. K.X. Huang, W.Q. Zhang, R. Devasenathipathy, Z.Y. Yang, X.X. Zhang, X.Q. Wang et al., Co nanoparticles and ZnS decorated N, S co-doped carbon nanotubes as an efficient oxygen reduction catalyst in zinc-air batteries. Int. J. Hydrogen Energy 46(58), 30090–30100 (2021)

    Article  CAS  Google Scholar 

  23. Z. Ul Abideen, F. Teng, Enhanced photochemical activity and stability of ZnS by a simple alkaline treatment approach. CrystEngComm 20(48), 7866–7879 (2018)

    Article  CAS  Google Scholar 

  24. J. Hu, F.F. Jia, Y.F. Song, Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries. Chem. Eng. J. 326, 273–280 (2017)

    Article  CAS  Google Scholar 

  25. S. Golczak, A. Kanciurzewska, M. Fahlman, K. Langer, J.J. Langer, Comparative XPS surface study of polyaniline thin films. Solid State Ion. 179(39), 2234–2239 (2008)

    Article  CAS  Google Scholar 

  26. M. Maruthapandi, A. Saravanan, P. Manohar, J.H.T. Luong, A. Gedanken, Photocatalytic degradation of organic dyes and antimicrobial activities by polyaniline–nitrogen-doped carbon dot nanocomposite. Nanomaterials 11(5), 1128 (2021)

    Article  CAS  Google Scholar 

  27. Y. Feng, Y. Zhang, Y. Wei, X. Song, Y. Fu, V.S. Battaglia, A ZnS nanocrystal/reduced graphene oxide composite anode with enhanced electrochemical performances for lithium-ion batteries. Phys. Chem. Chem. Phys. 18(44), 30630–30642 (2016)

    Article  CAS  Google Scholar 

  28. L.Y. Wang, J.G. Ju, N.P. Deng, G. Wang, B.W. Cheng, W.M. Kang, ZnS nanoparticles anchored on porous carbon nanofibers as anode materials for lithium ion batteries. Electrochem. Commun. 96, 1–5 (2018)

    Article  Google Scholar 

  29. Z.Y. Wu, C. Ma, Y.L. Bai, Y.S. Liu, S.F. Wang, X. Wei et al., Rubber-based carbon electrode materials derived from dumped tires for efficient sodium-ion storage. Dalton Trans. 47(14), 4885–4892 (2018)

    Article  CAS  Google Scholar 

  30. Y.Y. Zhao, W.W. Wang, M.N. Chen, R.J. Wang, Z. Fang, The synthesis of ZnS@MoS2 hollow polyhedrons for enhanced lithium storage performance. CrystEngComm 20(45), 7266–7274 (2018)

    Article  CAS  Google Scholar 

  31. R.P. Zhang, Y. Wang, M.Q. Jia, J.J. Xu, E.Z. Pan, One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries. Appl. Surf. Sci. 437, 375–383 (2018)

    Article  CAS  Google Scholar 

  32. C. Guo, Q.H. Wang, J.P. He, C.P. Wu, K.X. Xie, Y. Liu et al., Rational design of unique ZnO/ZnS@N-C heterostructures for high performance lithium-ion batteries. J. Phys. Chem. Lett. 11(3), 905–912 (2020)

    Article  CAS  Google Scholar 

  33. N. Du, H. Zhang, J. Chen, J.Y. Sun, B.D. Chen, D.R. Yang, Metal oxide and sulfide hollow spheres: layer-by-layer synthesis and their application in lithium-ion battery. J. Phys. Chem. B 112(47), 14836–14842 (2008)

    Article  CAS  Google Scholar 

  34. W. Li, K.L. Wang, K. Jiang, A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci. 7(23), 2000761 (2020)

    Article  CAS  Google Scholar 

  35. O.Y. Posudievsky, O.A. Kozarenko, V.S. Dyadyun, V.G. Koshechko, V.D. Pokhodenko, Electrochemical performance of mechanochemically prepared polyaniline doped with lithium salt. Synth. Met. 162(24), 2206–2211 (2012)

    Article  CAS  Google Scholar 

  36. C. Shen, K. Zhang, Y. You, H. Wang, R. Ning, Y. Qi et al., Inducing rapid polysulfide transformation through enhanced interfacial electronic interaction for lithium–sulfur batteries. Nanoscale 12(26), 13980–13986 (2020)

    Article  CAS  Google Scholar 

  37. A. Cheng, Y. Hu, M. Yue, J. Fu, H. Wu, S. Wang et al., Hollow N, C-co-doped carbon-coated ZnS nanospheres derived from metal organic framework (ZIF-8) with improved lithium and sodium storage performance. J. Phys. Mater. 4(4), 044003 (2021)

    Article  CAS  Google Scholar 

  38. A. Wang, X. Chen, G. Yu, Y. Wang, Carbon-coated ZnS composites for lithium-ion battery anode materials. Ionics 27(2), 541–550 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the author Dipak A. Tonpe is thankful to Chhatrapati Shahu Maharaj Research Training and Human Development Institute (SARTHI), Pune (Govt. of Maharashtra, India) for the financial support under the scheme CSMNRF-2019. One of the author R Sharma thanks to NRF Brain pool for financial support. The authors are thankful to the UGC-DAE Consortium for Scientific Research, Indore and IUAC, New Delhi for the characterization facilities. We are also thankful to the Department of Nanotechnology, Dr B. A. M. University for providing the laboratory facility.

Author information

Authors and Affiliations

Authors

Contributions

DAT contributed to conceptualization, investigation, methodology, data curation, formal analysis, and writing of the original draft. KPG contributed to investigation, data curation, formal analysis, writing of the original draft, and writing, reviewing, & editing of the manuscript. VVK contributed to investigation and writing, reviewing, & editing of the manuscript. MES contributed to investigation and formal analysis. MCS contributed to investigation and formal analysis. HJ contributed to investigation, data curation, and formal analysis. S-HH contributed to investigation, data curation, and formal analysis. RS contributed to conceptualization, methodology, writing of the original draft, and supervision.

Corresponding author

Correspondence to Ramphal Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tonpe, D.A., Gattu, K.P., Kutwade, V.V. et al. ZnS-PANI nanocomposite with enhanced electrochemical performances for lithium-ion batteries. J Mater Sci: Mater Electron 33, 18452–18463 (2022). https://doi.org/10.1007/s10854-022-08698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08698-5

Navigation