Skip to main content
Log in

Rheological phase reaction synthesis and electrochemical performance of LiFe2/3Mn1/3PO4/C cathode for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

LiFe2/3Mn1/3PO4/C composite was prepared by the rheological phase reaction using LiH2PO4, Li2CO3, FePO4, Mn(Ac)2·4H2O and ascorbic acid as starting materials. The crystal structure and morphology of as-synthesized sample were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The analysis of XRD results showed that the obtained sample was single-phase with orthorhombic olivine-type structure (Pnma space group). SEM micrographs revealed that the sample was aggregates, with an irregular morphology. The initial discharge capacity was 166.9, 149.1, 139.6, 112.8, 82.93 mAh g− 1 at the rate of 0.1, 0.5, 1, 2, and 10 C, respectively. And when the rate was 0.1, 0.5, 1, 2, and 10 C, the capacity retention was 92.2%, 90%, 92.9%, 97.6%, 91.5% after 50, 100, 200, 200, 500 cycles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. A. Masias, J. Marcicki, W.A. Paxton, Opportunities and challenges of lithium ion batteries in automotive applications. ACS Energy Lett. 6, 621–630 (2021)

    Article  CAS  Google Scholar 

  2. J. Hou, M. Yang, L. Zhou, X. Yan, C. Ke, J. Zhang, Transforming materials into practical automotive lithium-ion batteries. Adv. Mater. Technol. 6, 2100152–2100176 (2021)

    Article  CAS  Google Scholar 

  3. F. Meng, J. Gao, M. Zhang, D. Li, X. Liu, Enhanced safety performance of automotive lithium-ion batteries with Al2O3 coated non-oven separator. Batter. Supercaps 4, 146–151 (2021)

    Article  CAS  Google Scholar 

  4. T. Chen, L. Cai, X. Wen, X. Zhang, Experimental research and energy consumption analysis on the economic performance of a hybrid-power gas engine heat pump with LiFePO4 battery. Energy 214, 118913–118924 (2021)

    Article  CAS  Google Scholar 

  5. T.A. Wani, G. Suresh, A comprehensive review of LiMnPO4 based cathode materials for lithium-ion batteries: current strategies to improve its performance. J. Energy Storage 44, 103307–103364 (2021)

    Article  Google Scholar 

  6. J. Han, J. Yang, Z. Xu, H. Li, J. Wang, Dramatic improvement in high-rate capability of LiMnPO4 nanosheets via crystallite size regulation. J. Alloys Compd. 894, 162510–162519 (2022)

    Article  CAS  Google Scholar 

  7. A. Sarmadi, S.M. Masoudpanah, S. Alamolhoda, L-Lysine-assisted solvothermal synthesis of hollow-like structure LiFePO4/C powders as cathode materials for Li-ion batteries. J. Mater. Res. Technol. 15, 5405–5413 (2021)

    Article  CAS  Google Scholar 

  8. S. Sreedeep, V. Aravindan, Fabrication of 4.7 V class “rocking-chair” type Li-ion cells with carbon-coated LiCoPO4 as cathode and graphite anode. Mater. Lett. 291, 129609–129613 (2021)

    Article  CAS  Google Scholar 

  9. S. Pavithra, A. Priya, M. Jayachandra, T. Vijayakumar, T. Maiyalagan, J. Jayachitra, N. Sivakumar, Influence of aloe-vera gel mediated CuO coated LiNiPO4 cathode material in rechargeable battery applications. Inorg. Chem. Commun. 125, 108459–108465 (2021)

    Article  CAS  Google Scholar 

  10. J. Xiong, Y. Wang, Y. Wang, Z. Li, J. Zhang, Three-dimensional (3D) LiMn0.8Fe0.2PO4 nanoflowers assembled from interconnected nanoflakes as cathode materials for lithium ion batteries. Ceram. Int. 43, 3190–3195 (2017)

    Article  CAS  Google Scholar 

  11. Y. Yang, X. Chen, Y. Gu, K. Yang, Z. Han, Z. Yang, W. Long, H. Zhan, X. Ming, F. Zhan, The effect of using nano-bubble water as a solvent on the properties of lithium iron manganese phosphate prepared by solvothermal method. Mater. Lett. 299, 130053–130058 (2021)

    Article  CAS  Google Scholar 

  12. M. Zhao, G. Huang, B. Zhang, F. Wang, X. Song, Characteristics and electrochemical performance of LiFe0.5Mn0.5PO4/C used as cathode for aqueous rechargeable lithium battery. J. Power Sourc. 211, 202–207 (2012)

    Article  CAS  Google Scholar 

  13. H. Liu, L. Liu, C. Ding, A quick microwave-assisted rheological phase reaction route for preparing Cu3Mo2O9 with excellent lithium storage and supercapacitor performance. J. Alloys Compd. 867, 159061–159069 (2021)

    Article  CAS  Google Scholar 

  14. L. Zhu, G. Ding, Q. Sun, L. Xie, X. Cao, Na3V2(PO4)3/C composites as low-cost and high-performance cathode materials for sodium-ion batteries. Int. J. Energy Res. 45, 4534–4542 (2021)

    Article  CAS  Google Scholar 

  15. W. Wang, H. Wang, Y. Yu, Z. Wu, M. Asif, H. Liu, Metallic cobalt modified MnO-C nanocrystalline composites as an efficient bifunctional oxygen electrocatalyst. Catal. Sci. Technol. 8, 480–485 (2017)

    Article  Google Scholar 

  16. X. Han, G. Lin, Q. Zhang, Rheological phase reaction synthesis and electrochemical performance of rufigallol anode for lithium ion batteries. RSC Adv. 8, 19272–19277 (2018)

    Article  CAS  Google Scholar 

  17. X. Tian, Y. Zhou, X. Tu, Z. Zhang, G. Du, Well-dispersed LiFePO4 nanoparticles anchored on a three dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries. J. Power Sourc. 340, 40–50 (2017)

    Article  CAS  Google Scholar 

  18. K.F. Hsu, S.Y. Tsay, B.J. Hwang, Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol-gel route. J. Mater. Chem. 14, 2690–2695 (2004)

    Article  CAS  Google Scholar 

  19. W. Meng, Y. Xue, K. Zhang, Y. Zhang, Synthesis of FePO4·2H2O nanoplates and their usage for fabricating superior high-rate performance LiFePO4. Electrochim. Acta 56, 4294–4298 (2011)

    Article  Google Scholar 

  20. T. Long, Z. Luo, H. Liu, Y. Yu, Synthesis of novel high-voltage cathode material LiCoPO4 via rheological phase method. J. Alloys Compd. 502, 407–410 (2010)

    Article  Google Scholar 

  21. R. Qing, M.C. Yang, Y.S. Meng, W. Sigmund, Synthesis of LiNixFe1–xPO4 solid solution as cathode materials for lithium ion batteries. Electrochim. Acta 108, 827–832 (2013)

    Article  CAS  Google Scholar 

  22. J. Yang, J. Wang, D. Wang, X. Li, D. Geng, G. Liang, M. Cauthier, R. Li, Sun, 3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries. J. Power Sourc. 208, 340–344 (2012)

    Article  CAS  Google Scholar 

  23. G. Wang, X. Shen, J. Yao, One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. J. Power Sourc. 189, 543–546 (2009)

    Article  CAS  Google Scholar 

  24. R. Malik, Z. Fei, G. Ceder, Phase diagram and electrochemical properties of mixed olivines from first-principles calculations. Phys. Rev. 79, 214201–214208 (2009)

    Article  Google Scholar 

  25. R. Mei, Y. Yang, X. Song, Z. An, J. Zhang, Graphene encapsulated spherical hierarchical superstructures self-assembled by LiFe0.75Mn0.25PO4 nanoplates for high-performance Li-ion batteries. Electrochim. Acta 218, 325–334 (2016)

    Article  CAS  Google Scholar 

  26. G. Kobayashi, A. Yamada, S.I. Nishimura, Shift of redox potential and kinetics in Lix(MnyFe1–y)PO4. J. Power Sourc. 189, 397–401 (2009)

    Article  CAS  Google Scholar 

  27. Y. Wan, Q. Zheng, D. Lin, Recent development of LiMnPO4 as cathode materials of lithium-ion batteries. Acta Chim. Sin. 72, 537–551 (2014)

    Article  CAS  Google Scholar 

  28. D. Choi, J. Xiao, Y.J. Choi, J.S. Hardy, M. Vijayakumar, M.S. Bhuvaneswari, J. Liu, W. Xu, W. Wang, Z. Yang, G.L. Graff, J. Zhang, Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li ion batteries. Energy Environ. Sci. 4, 4560–4566 (2011)

    Article  CAS  Google Scholar 

  29. Z. Nie, C. Ouyang, J. Chen, Z. Zhong, Y. Du, D. Liu, S. Shi, M. Lei, First principles study of Jahn-Teller effects in LixMnPO4. Solid State Commun. 150, 40–44 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Ningxia (Grant No. 2019AAC03246) and the Key Research Foundation of Ningxia, the Science and Technology Plan Project of Guyuan City.

Author information

Authors and Affiliations

Authors

Contributions

ZY designed all of the experiments, interpreted the results and wrote the whole manuscript. JF participated in the material preparation. ZM, XY, and YS participated in the testing of materials.

Corresponding author

Correspondence to Zonghui Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Fu, J., Mu, Z. et al. Rheological phase reaction synthesis and electrochemical performance of LiFe2/3Mn1/3PO4/C cathode for lithium-ion batteries. J Mater Sci: Mater Electron 33, 18364–18373 (2022). https://doi.org/10.1007/s10854-022-08691-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08691-y

Navigation