Skip to main content

Advertisement

Log in

Highly conductive supercapacitor based on laser-induced graphene and silver nanowires

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One of the foremost necessary desires of energy systems has been the existence of efficient, flexible, transportable, and eco-friendly devices. Among all the energy storage systems, supercapacitors have attracted plenty of attention thanks to their distinctive properties. Among all capacitor technologies, laser-induced graphene (LIG)-based capacitors are within the spotlight nowadays due to their high flexibility and simple manufacture. The most downside with LIG-based capacitors is their low conductivity and low charge capacity. During this work, to overcome this problem, the surface of LIG is covered with silver nanowires (AgNWs) and LIG/AgNWs composite is employed to form supercapacitor. In this study, all the electrochemical properties of the prepared composite were investigated, and therefore the results showed that AgNWs could increase the electrical conductivity of LIG by about 2.25 times, improve electrode–electrolyte interaction, and increase areal capacitance by 1.3 times. Additionally, the synthesized supercapacitor shows stable cyclic behavior and retention capacity equal to 78% after 1000 charge–discharge cycles. A singular increase in LIG conductivity and improved in its cyclic performance. Furthermore, galvanostatic charge/discharge curves indicated acceptable charge capacity of the LIG/AgNWs supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Y. Zhang, Z. Jiang, X. Yu, Control strategies for battery/supercapacitor hybrid energy storage systems. In: 2008 IEEE Energy 2030 Conference (2008), pp. 1–6

  2. A.L. Allegre, A. Bouscayrol, R. Trigui, Influence of control strategies on battery/supercapacitor hybrid energy storage systems for traction applications. In 2009 IEEE Vehicle Power and Propulsion Conference (2009), pp. 213–220

  3. D.B.W. Abeywardana, B. Hredzak, V.G. Agelidis, G.D. Demetriades, Supercapacitor sizing method for energy-controlled filter-based hybrid energy storage systems. IEEE Trans. Power Electron. 32(2), 1626–1637 (2016)

    Article  Google Scholar 

  4. R. Barrero, X. Tackoen, J. Van Mierlo, Improving energy efficiency in public transport: stationary supercapacitor based energy storage systems for a metro network. In 2008 IEEE Vehicle Power and Propulsion Conference (2008), pp. 1–8

  5. Y. Kim, V. Raghunathan, A. Raghunathan, Design and management of battery-supercapacitor hybrid electrical energy storage systems for regulation services. IEEE Trans. Multi-Scale Comput. Syst. 3(1), 12–24 (2016)

    Article  Google Scholar 

  6. Y. Fu, X. Cai, H. Wu, Z. Lv, S. Hou, M. Peng et al., Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24(42), 5713–5718 (2012)

    Article  CAS  Google Scholar 

  7. Y.Z. Zhang, Y. Wang, T. Cheng, W.Y. Lai, H. Pang, W. Huang, Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44(15), 5181–5199 (2015)

    Article  CAS  Google Scholar 

  8. C.V.M. Gopi, R. Vinodh, S. Sambasivam, I.M. Obaidat, H.J. Kim, Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications. J. Energy Storage 27, 101035 (2020)

    Article  Google Scholar 

  9. M.F. El-Kady, R.B. Kaner, Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4(1), 1–9 (2013)

    Article  CAS  Google Scholar 

  10. L. Liu, Y. Feng, W. Wu, Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. J. Power Sources 410, 69–77 (2019)

    Article  CAS  Google Scholar 

  11. V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai et al., Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. USA 104(34), 13574–13577 (2007)

    Article  CAS  Google Scholar 

  12. X. Cai, M. Peng, X. Yu, Y. Fu, D. Zou, Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J. Mater. Chem. C 2(7), 1184–1200 (2014)

    Article  CAS  Google Scholar 

  13. M. Cakici, R.R. Kakarla, F. Alonso-Marroquin, Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem. Eng. J. 309, 151–158 (2017)

    Article  CAS  Google Scholar 

  14. D.P. Dubal, J.G. Kim, Y. Kim, R. Holze, C.D. Lokhande, W.B. Kim, Supercapacitors based on flexible substrates: an overview. Energy Technol. 2(4), 325–341 (2014)

    Article  Google Scholar 

  15. A. Lamberti, F. Clerici, M. Fontana, L. Scaltrito, A highly stretchable supercapacitor using laser-induced graphene electrodes onto elastomeric substrate. Adv. Energy Mater. 6(10), 1600050 (2016)

    Article  CAS  Google Scholar 

  16. F. Clerici, M. Fontana, S. Bianco, M. Serrapede, F. Perrucci, S. Ferrero et al., In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl. Mater. Interfaces. 8(16), 10459–10465 (2016)

    Article  CAS  Google Scholar 

  17. Z. Peng, J. Lin, R. Ye, E.L. Samuel, J.M. Tour, Flexible and stackable laser-induced graphene supercapacitors. ACS Appl. Mater. Interfaces. 7(5), 3414–3419 (2015)

    Article  CAS  Google Scholar 

  18. P. Zaccagnini, D. di Giovanni, M.G. Gomez, S. Passerini, A. Varzi, A. Lamberti, Flexible and high temperature supercapacitor based on laser-induced graphene electrodes and ionic liquid electrolyte, a de-rated voltage analysis. Electrochim. Acta 357, 136838 (2020)

    Article  CAS  Google Scholar 

  19. K.Y. Kim, H. Choi, C. Van Tran, J.B. In, Simultaneous densification and nitrogen doping of laser-induced graphene by duplicated pyrolysis for supercapacitor applications. J. Power Sources 441, 227199 (2019)

    Article  CAS  Google Scholar 

  20. Z. Peng, R. Ye, J.A. Mann, D. Zakhidov, Y. Li, P.R. Smalley et al., Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9(6), 5868–5875 (2015)

    Article  CAS  Google Scholar 

  21. X. Sun, X. Liu, F. Li, Sulfur-doped laser-induced graphene derived from polyethersulfone and lignin hybrid for all-solid-state supercapacitor. Appl. Surf. Sci. 551, 149438 (2021)

    Article  CAS  Google Scholar 

  22. M. d’Amora, A. Lamberti, M. Fontana, S. Giordani, Toxicity assessment of laser-induced graphene by zebrafish during development. J. Phys.: Mater. 3(3), 034008 (2020)

    Google Scholar 

  23. K. Rathinam, S.P. Singh, Y. Li, R. Kasher, J.M. Tour, C.J. Arnusch, Polyimide derived laser-induced graphene as adsorbent for cationic and anionic dyes. Carbon 124, 515–524 (2017)

    Article  CAS  Google Scholar 

  24. A.F. Carvalho, A.J. Fernandes, C. Leitão, J. Deuermeier, A.C. Marques, R. Martins et al., Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 28(52), 1805271 (2018)

    Article  CAS  Google Scholar 

  25. M.R. Bobinger, F.J. Romero, A. Salinas-Castillo, M. Becherer, P. Lugli, D.P. Morales et al., Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 144, 116–126 (2019)

    Article  CAS  Google Scholar 

  26. M. Parmeggiani, P. Zaccagnini, S. Stassi, M. Fontana, S. Bianco, C. Nicosia et al., PDMS/polyimide composite as an elastomeric substrate for multifunctional laser-induced graphene electrodes. ACS Appl. Mater. Interfaces 11(36), 33221–33230 (2019)

    Article  CAS  Google Scholar 

  27. F. Mahmood, H. Zhang, J. Lin, C. Wan, Laser-induced graphene derived from Kraft lignin for flexible supercapacitors. ACS Omega 5(24), 14611–14618 (2020)

    Article  CAS  Google Scholar 

  28. S.H. Lee, K.Y. Kim, J.R. Yoon, Binder-and conductive additive-free laser-induced graphene/LiNi1/3Mn1/3Co1/3O2 for advanced hybrid supercapacitors. NPG Asia Mater. 12(1), 1–15 (2020)

    Article  CAS  Google Scholar 

  29. M. Khandelwal, C. Van Tran, J. Lee, J.B. In, Nitrogen and boron co-doped densified laser-induced graphene for supercapacitor applications. Chem. Eng. J. 428, 131119 (2022)

    Article  CAS  Google Scholar 

  30. C. Thamaraiselvan, J. Wang, D.K. James, P. Narkhede, S.P. Singh, D. Jassby et al., Laser-induced graphene and carbon nanotubes as conductive carbon-based materials in environmental technology. Mater. Today 34, 115–131 (2020)

    Article  CAS  Google Scholar 

  31. A.K. Thakur, S.P. Singh, C. Thamaraiselvan, M.N. Kleinberg, C.J. Arnusch, Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes. J. Membr. Sci. 591, 117322 (2019)

    Article  CAS  Google Scholar 

  32. D.S. Bergsman, B.A. Getachew, C.B. Cooper, J.C. Grossman, Preserving nanoscale features in polymers during laser induced graphene formation using sequential infiltration synthesis. Nat. Commun. 11(1), 1–8 (2020)

    Article  CAS  Google Scholar 

  33. L. Li, J. Zhang, Z. Peng, Y. Li, C. Gao, Y. Ji, J.M. Tour, High-performance pseudocapacitive microsupercapacitors from laser-induced graphene. Adv. Mater. 28(5), 838–845 (2016)

    Article  CAS  Google Scholar 

  34. R. Ye, D.K. James, J.M. Tour, Laser-induced graphene. Acc. Chem. Res. 51(7), 1609–1620 (2018)

    Article  CAS  Google Scholar 

  35. R. Ye, D.K. James, J.M. Tour, Laser-induced graphene: from discovery to translation. Adv. Mater. 31(1), 1803621 (2019)

    Article  CAS  Google Scholar 

  36. R. Ye, Y. Chyan, J. Zhang, Y. Li, X. Han, C. Kittrell, J.M. Tour, Laser-induced graphene formation on wood. Adv. Mater. 29(37), 1702211 (2017)

    Article  CAS  Google Scholar 

  37. Z. Zhang, M. Song, J. Hao, K. Wu, C. Li, C. Hu, Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127, 287–296 (2018)

    Article  CAS  Google Scholar 

  38. X. Liu, D. Li, X. Chen, W.Y. Lai, W. Huang, Highly transparent and flexible all-solid-state supercapacitors based on ultralong silver nanowire conductive networks. ACS Appl. Mater. Interfaces 10(38), 32536–32542 (2018)

    Article  CAS  Google Scholar 

  39. M. Abdulhafez, G.N. Tomaraei, M. Bedewy, Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl. Nano Mater. 4(3), 2973–2986 (2021)

    Article  CAS  Google Scholar 

  40. M.G. Stanford, C. Zhang, J.D. Fowlkes, A. Hoffman, I.N. Ivanov, P.D. Rack, J.M. Tour, High-resolution laser-induced grapheme. Flexible electronics beyond the visible limit. ACS Applied Mater. Interfaces 12(9), 10902–10907 (2020)

    Article  CAS  Google Scholar 

  41. A.R. Cardoso, A.C. Marques, L. Santos, A.F. Carvalho, F.M. Costa, R. Martins et al., Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes. Biosens. Bioelectron. 124, 167–175 (2019)

    Article  CAS  Google Scholar 

  42. F. Wang, K. Wang, B. Zheng, X. Dong, X. Mei, J. Lv et al., Laser-induced graphene: preparation, functionalization and applications. Mater. Technol. 33(5), 340–356 (2018)

    Article  CAS  Google Scholar 

  43. L. Cao, S. Zhu, B. Pan, X. Dai, W. Zhao, Y. Liu et al., Stable and durable laser-induced graphene patterns embedded in polymer substrates. Carbon 163, 85–94 (2020)

    Article  CAS  Google Scholar 

  44. A. Ray, J. Roth, B. Saruhan, Laser-induced interdigital structured graphene electrodes based flexible micro-supercapacitor for efficient peak energy storage. Molecules 27(1), 329 (2022)

    Article  CAS  Google Scholar 

  45. G. Li, Z. Meng, J. Qian, C.L. Ho, S.P. Lau, W.Y. Wong, F. Yan, Inkjet printed pseudocapacitive electrodes on laser-induced graphene for electrochemical energy storage. Mater. Today Energy 12, 155–160 (2019)

    Article  Google Scholar 

  46. X. Li, W. Cai, K.S. Teh, M. Qi, X. Zang, X. Ding et al., High-voltage flexible microsupercapacitors based on laser-induced graphene. ACS Appl. Mater. Interfaces. 10(31), 26357–26364 (2018)

    Article  CAS  Google Scholar 

  47. M. Ren, J. Zhang, J.M. Tour, Laser-induced graphene synthesis of Co3O4 in graphene for oxygen electrocatalysis and metal-air batteries. Carbon 139, 880–887 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Nader Ghobadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, S.A.H., Ghobadi, N. & Zahrabi, F. Highly conductive supercapacitor based on laser-induced graphene and silver nanowires. J Mater Sci: Mater Electron 33, 18356–18363 (2022). https://doi.org/10.1007/s10854-022-08690-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08690-z

Navigation