Skip to main content
Log in

Unraveling the effect of mixed charge carrier on the electrical conductivity in MAPbBr3 perovskite due to ions incorporation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have investigated the role of H+, Bi3+, and Sb3+ ions incorporation on the structural, morphological, optical, and transport properties in MAPbBr3 perovskite. A comprehensive study of the Bi/Sb- and H+-doped samples on electrical transport properties as a function of light, and within the solar cell working temperature window reveals a hidden effect on the charge transport. Interestingly, Bi-doped samples produced at different acid concentrations showed an anomalous photoconductivity effect at room temperature accompanied by a suppression of photoluminescence emission peak suggesting the creation of non-radiative energy levels. Our results put forward that the coexistence of Bi3+ and interstitial protons in the doped samples collaborate to the detriment of electrical conductivity causing a large hysteresis during the thermal cycles, differently from the observed for the Sb-doped counterpart. Therefore, we pointed out that the presence of H+ ions in high concentration during the synthetic procedure associated with bismuth ions brings about harmful hysteresis and anomalous photoconductivity effects close to the solar cell working temperature which in turn causes degradation and low stability of the devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that all data generated and/or analyzed during this study are available in this article and its respective supplementary information file.

References

  1. Y. Zhou, J. Chen, O.M. Bakr, H.-T. Sun, Metal-doped lead halide perovskites: synthesis, properties, and optoelectronic applications. Chem. Mater. 30, 6589–6613 (2018). https://doi.org/10.1021/acs.chemmater.8b02989

    Article  CAS  Google Scholar 

  2. Y. Zhao, K. Zhu, Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 45, 655–689 (2016). https://doi.org/10.1039/C4CS00458B

    Article  CAS  Google Scholar 

  3. K. Galkowski, A. Mitioglu, A. Miyata et al., Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9, 962–970 (2016). https://doi.org/10.1039/C5EE03435C

    Article  CAS  Google Scholar 

  4. C.-J. Yu, U.-G. Jong, M.-H. Ri et al., Electronic structure and photoabsorption property of pseudocubic perovskites CH3NH3PbX3 (X = I, Br) including van der Waals interaction. J. Mater. Sci. 51, 9849–9854 (2016). https://doi.org/10.1007/s10853-016-0217-9

    Article  CAS  Google Scholar 

  5. S.A. Kulkarni, T. Baikie, P.P. Boix et al., Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221–9225 (2014). https://doi.org/10.1039/C4TA00435C

    Article  CAS  Google Scholar 

  6. Y. Chen, H.T. Yi, X. Wu et al., Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements. Nat. Commun. 7, 12253 (2016). https://doi.org/10.1038/ncomms12253

    Article  CAS  Google Scholar 

  7. A. Bonadio, C.A. Escanhoela, F.P. Sabino et al., Entropy-driven stabilization of the cubic phase of MaPbI3 at room temperature. J. Mater. Chem. A 9, 1089–1099 (2021). https://doi.org/10.1039/d0ta10492b

    Article  CAS  Google Scholar 

  8. J.I.J. Choi, M.E. Khan, Z. Hawash et al., Surface termination-dependent nanotribological properties of single-crystal MAPbBr3 surfaces. J. Phys. Chem. C 124, 1484–1491 (2020). https://doi.org/10.1021/acs.jpcc.9b10191

    Article  CAS  Google Scholar 

  9. A. Bonadio, F.P. Sabino, A. Tofanello et al., Tailoring the optical, electronic, and magnetic properties of MAPbI3 through self-assembled Fe incorporation. J. Phys. Chem. C 125, 15636–15646 (2021). https://doi.org/10.1021/acs.jpcc.1c03955

    Article  CAS  Google Scholar 

  10. B. Luo, F. Li, K. Xu et al., B-site doped lead halide perovskites: synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 7, 2781–2808 (2019). https://doi.org/10.1039/C8TC05741A

    Article  CAS  Google Scholar 

  11. X. Zhang, L. Li, Z. Sun, J. Luo, Rational chemical doping of metal halide perovskites. Chem. Soc. Rev. 48, 517–539 (2019). https://doi.org/10.1039/C8CS00563J

    Article  CAS  Google Scholar 

  12. P.K. Nayak, M. Sendner, B. Wenger et al., Impact of Bi3+ heterovalent doping in organic–inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140, 574–577 (2018). https://doi.org/10.1021/jacs.7b11125

    Article  CAS  Google Scholar 

  13. A.M. Ulatowski, A.D. Wright, B. Wenger et al., Charge–carrier trapping dynamics in bismuth-doped thin films of MAPbBr3 perovskite. J. Phys. Chem. Lett. 11, 3681–3688 (2020). https://doi.org/10.1021/acs.jpclett.0c01048

    Article  CAS  Google Scholar 

  14. C. Li, X. Chen, N. Li et al., Highly conductive n-type CH3NH3PbI3 single crystals doped with bismuth donors. J. Mater. Chem. C 8, 3694–3704 (2020). https://doi.org/10.1039/C9TC06854F

    Article  CAS  Google Scholar 

  15. H. Huang, M.I. Bodnarchuk, S.V. Kershaw et al., Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2, 2071–2083 (2017). https://doi.org/10.1021/acsenergylett.7b00547

    Article  CAS  Google Scholar 

  16. R.E. Brandt, V. Stevanović, D.S. Ginley, T. Buonassisi, Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015). https://doi.org/10.1557/mrc.2015.26

    Article  CAS  Google Scholar 

  17. M. Becker, T. Klüner, M. Wark, Formation of hybrid ABX3 perovskite compounds for solar cell application: first-principles calculations of effective ionic radii and determination of tolerance factors. Dalton Trans. 46, 3500–3509 (2017). https://doi.org/10.1039/C6DT04796C

    Article  CAS  Google Scholar 

  18. A.L. Abdelhady, M.I. Saidaminov, B. Murali et al., Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. J. Phys. Chem. Lett. 7, 295–301 (2016). https://doi.org/10.1021/acs.jpclett.5b02681

    Article  CAS  Google Scholar 

  19. M. Yavari, F. Ebadi, S. Meloni et al., How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. J. Mater. Chem. A 7, 23838–23853 (2019). https://doi.org/10.1039/C9TA01744E

    Article  CAS  Google Scholar 

  20. R. Meng, G. Wu, J. Zhou et al., Understanding the impact of bismuth heterovalent doping on the structural and photophysical properties of CH3NH3PbBr3 halide perovskite crystals with near-IR photoluminescence. Chemistry 25, 5480–5488 (2019). https://doi.org/10.1002/chem.201805370

    Article  CAS  Google Scholar 

  21. Y. Yamada, M. Hoyano, R. Akashi et al., Impact of chemical doping on optical responses in bismuth-doped CH3NH3PbBr3 single crystals: carrier lifetime and photon recycling. J. Phys. Chem. Lett. 8, 5798–5803 (2017). https://doi.org/10.1021/acs.jpclett.7b02508

    Article  CAS  Google Scholar 

  22. D. Moia, J. Maier, Ion transport, defect chemistry, and the device physics of hybrid perovskite solar cells. ACS Energy Lett. 6, 1566–1576 (2021). https://doi.org/10.1021/acsenergylett.1c00227

    Article  CAS  Google Scholar 

  23. E.A. Duijnstee, J.M. Ball, V.M. Le Corre et al., Toward understanding space-charge limited current measurements on metal halide perovskites. ACS Energy Lett. 5, 376–384 (2020). https://doi.org/10.1021/acsenergylett.9b02720

    Article  CAS  Google Scholar 

  24. D.R. Ceratti, A. Zohar, R. Kozlov et al., Eppur si muove: proton diffusion in halide perovskite single crystals. Adv. Mater. 32, 2002467 (2020). https://doi.org/10.1002/adma.202002467

    Article  CAS  Google Scholar 

  25. M. Ding, L. Sun, X. Chen et al., Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability Energy materials. J. Mater. Sci. 54, 12000–12011 (2019). https://doi.org/10.1007/s10853-019-03768-2

    Article  CAS  Google Scholar 

  26. D.A. Egger, L. Kronik, A.M. Rappe, Theory of hydrogen migration in organic–inorganic halide perovskites. Angew Chemie Int Ed 54, 12437–12441 (2015). https://doi.org/10.1002/anie.201502544

    Article  CAS  Google Scholar 

  27. E. Amerling, H. Lu, B.W. Larson et al., A multi-dimensional perspective on electronic doping in metal halide perovskites. ACS Energy Lett. 6, 1104–1123 (2021). https://doi.org/10.1021/ACSENERGYLETT.0C02476/ASSET

    Article  CAS  Google Scholar 

  28. C. Geng, S. Xu, H. Zhong et al., Aqueous synthesis of methylammonium lead halide perovskite nanocrystals. Angew Chemie Int. Ed. 57, 9650–9654 (2018). https://doi.org/10.1002/anie.201802670

    Article  CAS  Google Scholar 

  29. J. Ding, Y. Zhao, S. Du et al., Controlled growth of MAPbBr3 single crystal: understanding the growth morphologies of vicinal hillocks on (100) facet to form perfect cubes. J. Mater. Sci. 52, 7907–7916 (2017). https://doi.org/10.1007/s10853-017-0995-8

    Article  CAS  Google Scholar 

  30. J.I. Langford, A.J.C. Wilson, Scherrer after 60 years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  31. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charact. 58, 883–891 (2007). https://doi.org/10.1016/j.matchar.2006.09.002

    Article  CAS  Google Scholar 

  32. J.D. McGettrick, K. Hooper, A. Pockett et al., Sources of Pb(0) artefacts during XPS analysis of lead halide perovskites. Mater. Lett. 251, 98–101 (2019). https://doi.org/10.1016/j.matlet.2019.04.081

    Article  CAS  Google Scholar 

  33. W. Tang, J. Zhang, S. Ratnasingham et al., Substitutional doping of hybrid organic–inorganic perovskite crystals for thermoelectrics. J. Mater. Chem. A 8, 13594–13599 (2020). https://doi.org/10.1039/D0TA03648J

    Article  CAS  Google Scholar 

  34. H.-S. Kim, N.-G. Park, Importance of tailoring lattice strain in halide perovskite crystals. NPG Asia Mater. 12, 78 (2020). https://doi.org/10.1038/s41427-020-00265-w

    Article  CAS  Google Scholar 

  35. H. Cai, Y. Sun, X. Zhang et al., Reduction temperature-dependent nanoscale morphological transformation and electrical conductivity of silicate glass microchannel plate. Materials (Basel) 12, 1183 (2019). https://doi.org/10.3390/ma12071183

    Article  CAS  Google Scholar 

  36. N. Yi, S. Wang, Z. Duan et al., Tailoring the performances of lead halide perovskite devices with electron-beam irradiation. Adv. Mater. 29, 1701636 (2017). https://doi.org/10.1002/adma.201701636

    Article  CAS  Google Scholar 

  37. G. Zhang, L. Cai, Y. Zhang, Y. Wei, Bi5+, Bi(3 – x)+, and oxygen vacancy induced BiOClx1–x solid solution toward promoting visible-light driven photocatalytic activity. Chemistry 24, 7434–7444 (2018). https://doi.org/10.1002/chem.201706164

    Article  CAS  Google Scholar 

  38. M.B. Costa, F.W.S. Lucas, M. Medina, L.H. Mascaro, All-electrochemically grown Sb2Se3 /a-MoS x photocathodes for hydrogen production: the effect of the MoSx layer on the surface recombination and photocorrosion of Sb2 Se3 Films. ACS Appl. Energy Mater. 3, 9799–9808 (2020). https://doi.org/10.1021/acsaem.0c01413

    Article  CAS  Google Scholar 

  39. I. Martini, E. Chevallay, V. Fedosseev et al. Surface characterization at CERN of photocathodes for photoinjector applications. In: 6th International Particle Accelerator Conference, IPAC 2015. pp 1703–1705 (2015)

  40. T.J. Whittles, T.D. Veal, C.N. Savory et al., Core levels, band alignments, and valence-band states in CuSbS2 for solar cell applications. ACS Appl. Mater. Interfaces 9, 41916–41926 (2017). https://doi.org/10.1021/acsami.7b14208

    Article  CAS  Google Scholar 

  41. X. Guo, C. McCleese, C. Kolodziej et al., Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalt Trans. 45, 3806–3813 (2016). https://doi.org/10.1039/C5DT04420K

    Article  CAS  Google Scholar 

  42. C. Rocks, V. Svrcek, T. Velusamy et al., Type-I alignment in MAPbI3 based solar devices with doped-silicon nanocrystals. Nano Energy 50, 245–255 (2018). https://doi.org/10.1016/j.nanoen.2018.05.036

    Article  CAS  Google Scholar 

  43. M.C. Jung, Y.M. Lee, H.K. Lee et al., The presence of CH3NH2 neutral species in organometal halide perovskite films. Appl. Phys. Lett. 108, 73901 (2016). https://doi.org/10.1063/1.4941994

    Article  CAS  Google Scholar 

  44. H. Syafutra, J.-H. Yun, Y. Yoshie et al., Surface degradation mechanism on CH3NH3PbBr3 hybrid perovskite single crystal by a grazing E-beam irradiation. Nanomaterials 10, 1253 (2020). https://doi.org/10.3390/nano10071253

    Article  CAS  Google Scholar 

  45. P. Chen, Y. Bai, S. Wang et al., In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28, 1706923 (2018). https://doi.org/10.1002/adfm.201706923

    Article  CAS  Google Scholar 

  46. O.A. Lozhkina, A.A. Murashkina, V.V. Shilovskikh et al., Invalidity of band-gap engineering concept for Bi3+ heterovalent doping in CsPbBr3 halide perovskite. J. Phys. Chem. Lett. 9, 5408–5411 (2018). https://doi.org/10.1021/acs.jpclett.8b02178

    Article  CAS  Google Scholar 

  47. J.-W. Lee, S.-G. Kim, J.-M. Yang et al., Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 7, 041111 (2019). https://doi.org/10.1063/1.5085643

    Article  CAS  Google Scholar 

  48. J. Xing, C. Zhao, Y. Zou et al., Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light Sci. Appl. 9, 111 (2020). https://doi.org/10.1038/s41377-020-00349-w

    Article  CAS  Google Scholar 

  49. Y. Zhao, W. Zhou, Z. Han et al., Effects of ion migration and improvement strategies for the operational stability of perovskite solar cells. Phys. Chem. Chem. Phys. 23, 94–106 (2021). https://doi.org/10.1039/D0CP04418K

    Article  CAS  Google Scholar 

  50. A.E. Nogueira, M.R.S. Soares, J.B. Souza Junior et al., Discovering a selective semimetal element to increase hematite photoanode charge separation efficiency. J. Mater. Chem. A 7, 16992–16998 (2019). https://doi.org/10.1039/c9ta05452a

    Article  CAS  Google Scholar 

  51. L.M. Herz, Charge–carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276

    Article  CAS  Google Scholar 

  52. G. Sombrio, Z. Zhang, A. Bonadio et al., Charge transport in MAPbI3 pellets across the tetragonal-to-cubic phase transition: the role of grain boundaries from structural, electrical, and optical characterizations. J. Phys. Chem. C 124, 10793–10803 (2020). https://doi.org/10.1021/acs.jpcc.0c00887

    Article  CAS  Google Scholar 

  53. F. Guo, B. Zhang, J. Wang et al., Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X = I, Br, Cl) crystals. Opt. Mater. Express. 7, 4156 (2017). https://doi.org/10.1364/OME.7.004156

    Article  CAS  Google Scholar 

  54. O.I. Semenova, E.S. Yudanova, N.A. Yeryukov et al., Perovskite CH3 NH3 PbI3 crystals and films. Synthesis and characterization. J. Cryst. Growth 462, 45–49 (2017). https://doi.org/10.1016/j.jcrysgro.2017.01.019

    Article  CAS  Google Scholar 

  55. J. Zhang, B. Wei, L. Wang, X. Yang, The solution-processed fabrication of perovskite light-emitting diodes for low-cost and commercial applications. J. Mater. Chem. C 9, 12037–12045 (2021). https://doi.org/10.1039/D1TC03385A

    Article  CAS  Google Scholar 

  56. H. Jin, E. Debroye, M. Keshavarz et al., It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horizons 7, 397 (2020). https://doi.org/10.1039/c9mh00500e

    Article  CAS  Google Scholar 

  57. A. Nur’aini, S. Lee, I. Oh, Ion migration in metal halide perovskites. J. Electrochem. Sci. Technol. 13, 71–77 (2022). https://doi.org/10.33961/jecst.2021.00136

    Article  CAS  Google Scholar 

  58. Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016). https://doi.org/10.1021/acs.accounts.5b00420

    Article  CAS  Google Scholar 

  59. X. Wang, Y. Li, Y. Xu et al., Ion migrations in lead halide perovskite single crystals with different halide components. Phys. Status Solidi 257, 1900784 (2020). https://doi.org/10.1002/pssb.201900784

    Article  CAS  Google Scholar 

  60. C. Li, A. Guerrero, S. Huettner, J. Bisquert, Unravelling the role of vacancies in lead halide perovskite through electrical switching of photoluminescence. Nat. Commun. 9, 5113 (2018). https://doi.org/10.1038/s41467-018-07571-6

    Article  CAS  Google Scholar 

  61. L.R.V. Buizza, A.D. Wright, G. Longo et al., Charge–carrier mobility and localization in semiconducting Cu2AgBiI6 for photovoltaic applications. ACS Energy Lett. 6, 1729–1739 (2021). https://doi.org/10.1021/ACSENERGYLETT.1C00458

    Article  CAS  Google Scholar 

  62. H.F. Haneef, A.M. Zeidell, O.D. Jurchescu, Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. J. Mater. Chem. C 8, 759–787 (2020). https://doi.org/10.1039/C9TC05695E

    Article  CAS  Google Scholar 

  63. A.D. Wright, C. Verdi, R.L. Milot et al., Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016). https://doi.org/10.1038/ncomms11755

    Article  CAS  Google Scholar 

  64. J. Rappich, F. Lang, V.V. Brus et al., Light-induced defect generation in CH3NH3PbI3 thin films and single crystals. Sol RRL 4, 1900216 (2020). https://doi.org/10.1002/solr.201900216

    Article  CAS  Google Scholar 

  65. J. Holovský, A. Peter Amalathas, L. Landová et al., Lead halide residue as a source of light-induced reversible defects in hybrid perovskite layers and solar cells. ACS Energy Lett. 4, 3011–3017 (2019). https://doi.org/10.1021/ACSENERGYLETT.9B02080/ASSET

    Article  Google Scholar 

  66. M. Ledinsky, T. Schönfeldová, J. Holovský et al., Temperature dependence of the urbach energy in lead iodide perovskites. J. Phys. Chem. Lett. 10, 1368–1373 (2019). https://doi.org/10.1021/ACS.JPCLETT.9B00138/SUPPL_FILE/JZ9B00138_SI_001.PDF

    Article  CAS  Google Scholar 

  67. S. Nazerdeylami, Dominant recombination mechanism in perovskite solar cells: a theoretical study. Sol Energy 206, 27–34 (2020). https://doi.org/10.1016/j.solener.2020.05.095

    Article  CAS  Google Scholar 

  68. S. De Wolf, J. Holovsky, S.J. Moon et al., Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014). https://doi.org/10.1021/JZ500279B/SUPPL_FILE/JZ500279B_SI_001.PDF

    Article  Google Scholar 

  69. B. Galvani, D. Suchet, A. Delamarre et al., Impact of electron–phonon scattering on optical properties of CH3NH3PbI3 hybrid perovskite material. ACS Omega 4, 21487–21493 (2019). https://doi.org/10.1021/ACSOMEGA.9B03178/SUPPL_FILE/AO9B03178_SI_001.PDF

    Article  CAS  Google Scholar 

  70. M. Stutzmann, The defect density in amorphous silicon. Philos. Magn. B 60, 531–546 (1989). https://doi.org/10.1080/13642818908205926

    Article  CAS  Google Scholar 

  71. W. Tress, Metal halide perovskites as mixed electronic–ionic conductors: challenges and opportunities—from hysteresis to memristivity. J. Phys. Chem. Lett. 8, 3106–3114 (2017). https://doi.org/10.1021/acs.jpclett.7b00975

    Article  CAS  Google Scholar 

  72. W. Wang, X. Wang, B. Zhang et al., Ion migration of MAPbBr3 single crystal devices with coplanar and sandwich electrode structures. Physica B 593, 412310 (2020). https://doi.org/10.1016/j.physb.2020.412310

    Article  CAS  Google Scholar 

  73. X. Zhang, J.-X. Shen, M.E. Turiansky, C.G. Van de Walle, Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971–976 (2021). https://doi.org/10.1038/s41563-021-00986-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by FAPESP under Grant Nos. 2020/09563-1, 2017/02317-2, 2018/15682-3, 2021/11446-6 and 2018/14181-0. We are also thankful for the support from the Brazilian agencies CAPES and CNPq under Grant Nos. 307950/2017-4 and 305601/2019-9 and ANP (Grant Number: 045919). The authors are grateful to the UFABC Multiuser Central Facilities for the experimental support.

Author information

Authors and Affiliations

Authors

Contributions

ALMF and AT conducted most of the synthesis, characterizations, and data analysis. AB analyzed the XRD data. ALMF and JAS wrote the manuscript. JAS supervised the project. All authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Andre L. M. Freitas or Jose A. Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2567.5 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, A.L.M., Tofanello, A., Bonadio, A. et al. Unraveling the effect of mixed charge carrier on the electrical conductivity in MAPbBr3 perovskite due to ions incorporation. J Mater Sci: Mater Electron 33, 18327–18344 (2022). https://doi.org/10.1007/s10854-022-08687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08687-8

Navigation