Skip to main content

Advertisement

Log in

Hydrothermal synthesis of ZnO nanoflowes for rapid detection of sertraline and imipramine using the modified screen-printed electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanoflowers-modified graphite screen-printed electrode had very good electrochemical catalytic activity toward sertraline and imipramine. Results showed significant decline in the oxidation overpotentials of sertraline and imipramine in comparison with the overpotential at the bare graphite screen-printed electrode. Moreover, differential pulse voltammetry has been utilized to simultaneously determine sertraline and imipramine in the ternary mixture. Based on the analyses, the peak separation between sertraline and imipramine was 200 mV. In addition, calibration curve for imipramine ranged from 0.1 to 550.0 μM. Furthermore, minimum limit of detection (S/N = 3) equaled 0.035 μM imipramine. Finally, this new procedure exhibited acceptable sensitivity and selectivity so that it could be utilized for determining sertraline and imipramine in the pharmaceutical medicines and urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.J. Daly, J.B. Singh, M. Fedgchin, K. Cooper, P. Lim, R.C. Shelton, M.E. Thase, A. Winokur, L. Van Nueten, H. Manji, W.C. Drevets, Efficacy and safety of intranasal esketamine adjunctive to oral antidepressant therapy in treatment-resistant depression: a randomized clinical trial. JAMA Psychiat. 75, 139–148 (2018)

    Article  Google Scholar 

  2. A.M. Tackman, D.A. Sbarra, A.L. Carey, M.B. Donnellan, A.B. Horn, N.S. Holtzman, T.M.S. Edwards, J.W. Pennebaker, M.R. Mehl, Depression, negative emotionality, and self-referential language: a multi-lab, multi-measure, and multi-language-task research synthesis. J. Pers. Soc. Psychol. 116, 817–834 (2018)

    Article  Google Scholar 

  3. E. Baca, M.G. de Chávez, M. García-Toro, F. Pérez-Arnau, A. Porras-Chavarino, Sertraline is more effective than imipramine in the treatment of non-melancholic depression: results from a multicentre, randomized study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 27, 493–500 (2003)

    Article  CAS  Google Scholar 

  4. M. Vermeiden, A.M. Kamperman, W.J. Hoogendijk, W.W. van den Broek, T.K. Birkenhäger, Outcome of a three-phase treatment algorithm for inpatients with melancholic depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 84, 214–220 (2018)

    Article  Google Scholar 

  5. J. Jastrzębska, M. Frankowska, A. Suder, K. Wydra, E. Nowak, M. Filip, E. Przegaliński, Effects of escitalopram and imipramine on cocaine reinforcement and drug-seeking behaviors in a rat model of depression. Brain Res. 1673, 30–41 (2017)

    Article  CAS  Google Scholar 

  6. H. Cheng, J. Liang, Q. Zhang, Y. Tu, the electrochemical behavior and oxidation mechanism of sertraline on a rutin modified electrode. J. Electroanal. Chem. 674, 7–11 (2012)

    Article  CAS  Google Scholar 

  7. D. Neumann, J.R. Fann, C.H. Bombardier, N. Temkin, P. Esselman, C. Warms, J. Barber, S. Dikmen, Sertraline for major depression during the year following traumatic brain injury: a randomized controlled trial. J. Head Trauma Rehabil. 32, 332–342 (2017)

    Article  Google Scholar 

  8. X.H. Yue, Z. Wang, D.D. Tian, J.W. Zhang, K. Zhu, Q. Ye, Determination of sertraline in human plasma by UPLC–MS/MS and its application to a pharmacokinetic study. J. Chromatogr. Sci. 54, 195–199 (2015)

    CAS  Google Scholar 

  9. A. Khraiwesh, I. Papoutsis, P. Nikolaou, C. Pistos, C. Spiliopoulou, S. Athanaselis, Development and validation of an EI-GC/MS method for the determination of sertraline and its major metabolite desmethyl-sertraline in blood. J. Chromatogr. B 879, 2576–2582 (2011)

    Article  CAS  Google Scholar 

  10. M.A. Rahman, Z. Iqbal, M.A. Mirza, A. Hussain, Estimation of sertraline by chromatographic (HPLC-UV273 nm) technique under hydrolytic stress conditions. Pharm. Methods 3, 62 (2012)

    Article  Google Scholar 

  11. A.G. Chen, Y.K. Wing, H. Chiu, S. Lee, C.N. Chen, K. Chan, Simultaneous determination of imipramine, desipramine and their 2-and 10-hydroxylated metabolites in human plasma and urine by high-performance liquid chromatography. Biomed. Sci. Appl. 693, 153–158 (1997)

    Article  CAS  Google Scholar 

  12. E.J. Berm, J. Paardekooper, E. Brummel-Mulder, E. Hak, B. Wilffert, J.G. Maring, A simple dried blood spot method for therapeutic drug monitoring of the tricyclic antidepressants amitriptyline, nortriptyline, imipramine, clomipramine, and their active metabolites using LC-MS/MS. Talanta 134, 165–172 (2015)

    Article  CAS  Google Scholar 

  13. L. Truta, A.L. Castro, S. Tarelho, P. Costa, M.G.F. Sales, H.M. Teixeira, Antidepressants detection and quantification in whole blood samples by GC–MS/MS, for forensic purposes. J. Pharm. Biomed. Anal. 128, 496–503 (2016)

    Article  CAS  Google Scholar 

  14. E.E. Chambers, M.J. Woodcock, J.P. Wheaton, T.M. Pekol, D.M. Diehl, Systematic development of an UPLC–MS/MS method for the determination of tricyclic antidepressants in human urine. J. Pharm. Biomed. Anal. 88, 660–665 (2014)

    Article  CAS  Google Scholar 

  15. N. Erk, Rapid and simple methods for quantitative analysis of some antidepressant in pharmaceutical formulations by using first derivative spectrophotometry and HPLC. Il Farmaco 58, 1209–1216 (2003)

    Article  CAS  Google Scholar 

  16. H. Beitollai, R. Zaimbashi, A new sensor based on graphite screen printed electrode modified with Cu-nanocomplex for determination of paracetamol. Nanochem. Res. 2, 151–158 (2017)

    Google Scholar 

  17. S. Rawlinson, A. McLister, P. Kanyong, J. Davis, Rapid determination of salicylic acid at screen printed electrodes. Microchem. J. 137, 71–77 (2018)

    Article  CAS  Google Scholar 

  18. R. Zaimbashi, H. Beitollahi, M. Torkzadeh-Mahani, Simultaneous electrochemical sensing of methyldopa and hydrochlorothiazide using a Novel ZnO/Al2O3 nanocomposite modified screen printed electrode. Anal. Bioanal. Chem. 9, 1008–1020 (2017)

    CAS  Google Scholar 

  19. M. Singh, I. Tiwari, C.W. Foster, C.E. Banks, highly sensitive and selective determination of dopamine using screen-printed electrodes modified with nanocomposite of N′-phenyl-p-phenylenediamine/multiwalled carbon nanotubes/nafion. Mater. Res. Bull. 101, 253–263 (2018)

    Article  CAS  Google Scholar 

  20. P. Prabhu, R.S. Babu, S.S. Narayanan, Electrochemical determination of l-vanillin using copper hexacyanoferrate film modified gold nanoparticle graphite-wax composite electrode. J. Mater. Sci. Mater. Electron. 30(10), 9955–9963 (2019)

    Article  CAS  Google Scholar 

  21. S. Tajik, M.A. Taher, H. Beitollahi, first report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor. J. Electroanal. Chem. 704, 137–144 (2013)

    Article  CAS  Google Scholar 

  22. J. Wang, P. Diao, Simultaneous detection of ammonia and nitrate using a modified electrode with two regions. Microchem. J. 154, 1–6 (2020)

    Article  Google Scholar 

  23. H. Soltani, H. Beitollahi, A.H. Hatefi-Mehrjardi, S. Tajik, M. Torkzadeh-Mahani, Voltammetric determination of glutathione using a modified single walled carbon nanotubes paste electrode. Anal. Bioanal. Electrochem. 6, 67–79 (2014)

    CAS  Google Scholar 

  24. X. Guo, H. Yue, S. Huang, X. Gao, H. Chen, P. Wu, T. Zhang, Z. Wang, Electrochemical method for determination of levodopa in the presence of uric acid using In2S3 nanospheres on 3D graphene-modified ITO glass electrode. J. Mater. Sci. Mater. Electron. 31(16), 13680–13687 (2020)

    Article  CAS  Google Scholar 

  25. H. Cheng, W. Weng, H. Xie, J. Liu, G. Luo, S. Huang, W. Sun, G. Li, Au-Pt@ biomass porous carbon composite modified electrode for sensitive electrochemical detection of baicalein. Microchem. J. 154, 1–7 (2020)

    Article  CAS  Google Scholar 

  26. K. Chetankumar, B.E. Swamy, T.S. Naik, a reliable electrochemical sensor for detection of catechol and hydroquinone at MgO/GO modified carbon paste electrode. J. Mater. Sci. Mater. Electron. 31(22), 19728–19740 (2020)

    Article  CAS  Google Scholar 

  27. H. Beitollahi, S. Mohammadi, Selective voltammetric determination of norepinephrine in the presence of acetaminophen and tryptophan on the surface of a modified carbon nanotube paste electrode. Mater. Sci. Eng. C 33, 3214–3219 (2013)

    Article  CAS  Google Scholar 

  28. A.S. Castro, M.M.T. de Menezes, G.M. Alves, M.F. de Oliveira, Voltammetric analysis of cocaine hydrochloride at carbon paste electrode chemically modified with N, N’-ethylene-bis-(salicylideneiminato) manganese (II) Schiff base complex. Microchem. J. 153, 1–21 (2020)

    Article  CAS  Google Scholar 

  29. K. Cao, C. Si, H. Zhang, J. Hu, D. Zheng, an electrochemical sensor based on a glassy carbon electrode modified with optimized Cu–Fe3O4 nanocomposite for 4-nitrophenol detection. J. Mater. Sci. Mater. Electron. 33, 2386–2398 (2022)

    Article  CAS  Google Scholar 

  30. H. Beitollahi, S. Tajik, Construction of a nanostructure-based electrochemical sensor for voltammetric determination of bisphenol A. Environ. Monit. Assess. 187, 1–11 (2015)

    Article  CAS  Google Scholar 

  31. T. Le Hai, L.C. Hung, T.T.B. Phuong, B.T.T. Ha, B.S. Nguyen, T.D. Hai, V.H. Nguyen, Multiwall carbon nanotube modified by antimony oxide (Sb2O3/MWCNTs) paste electrode for the simultaneous electrochemical detection of cadmium and lead ions. Microchem. J. 153, 1–24 (2020)

    Article  CAS  Google Scholar 

  32. H. Beitollahi, Z. Dourandish, S. Tajik, M.R. Ganjali, P. Norouzi, F. Faridbod, Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J. Rare Earths 36, 750–757 (2018)

    Article  CAS  Google Scholar 

  33. D.T.N. Hoa, T.T.T. Toan, T.X. Mau, N.T.V. Hoan, T.T.N. Tram, T.D. Manh, V.T. Nguyen, V.T. Duyen, P.L.M. Thong, D.Q. Khieu, Voltammetric determination of Auramine O with ZIF-67/Fe2O3/g-C3N4-modified electrode. J. Mater. Sci. Mater. Electron. 31(22), 19741–19755 (2020)

    Article  CAS  Google Scholar 

  34. L. Qiu, P. Lv, C. Zhao, X. Feng, G. Fang, J. Liu, S. Wang, Electrochemical detection of organophosphorus pesticides based on amino acids conjugated nanoenzyme modified electrodes. Sens. Actuators B Chem. 286, 386–393 (2019)

    Article  CAS  Google Scholar 

  35. K. Manivannan, M. Sivakumar, C.C. Cheng, C.H. Lu, J.K. Chen, an effective electrochemical detection of chlorogenic acid in real samples: flower-like ZnO surface covered on PEDOT: PSS composites modified glassy carbon electrode. Sens. Actuators B Chem. 301, 1–8 (2018)

    Google Scholar 

  36. S. Yao, G. Li, Y. Liu, S. Wei, H. Wang, X. Huang, Z. Luo, Electrochemical detection of pyridoxal using a sonoelectrochemical prepared highly-oxidized carbon nanosheets modified electrode. Sens. Actuators B Chem. 274, 324–330 (2018)

    Article  CAS  Google Scholar 

  37. J. Hoyos-Arbeláez, G.R. García, F.J. Arévalo, M. Vázquez, H. Fernández, S.G. Granados, Electrochemical determination of mangiferin using glassy carbon electrodes modified with carbonaceous nanomaterials. J. Electroanal. Chem. 808, 1–7 (2018)

    Article  CAS  Google Scholar 

  38. M. Bilgi, E. Ayranci, Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. J. Electroanal. Chem. 823, 588–592 (2018)

    Article  CAS  Google Scholar 

  39. S. Sharma, N. Singh, V. Tomar, R. Chandra, a review on electrochemical detection of serotonin based on surface modified electrodes. Biosens. Bioelectron. 107, 76–93 (2018)

    Article  CAS  Google Scholar 

  40. C. Zhang, Z. Cao, G. Zhang, Y. Yan, X. Yang, J. Chang, Y. Song, Y. Jia, P. Pan, W. Mi, Z. Yang, an electrochemical sensor based on plasma-treated zinc oxide nanoflowers for the simultaneous detection of dopamine and diclofenac sodium. Microchem. J. 158, 105237 (2020)

    Article  CAS  Google Scholar 

  41. H. Beitollahi, S. Tajik, F.G. Nejad, M. Safaei, Recent advances in ZnO nanostructure-based electrochemical sensors and biosensors. J. Mater. Chem. B 8(27), 5826–5844 (2020)

    Article  Google Scholar 

  42. S. Ponnada, D.B. Gorle, M.S. Kiai, S. Rajagopal, R.K. Sharma, A. Nowduri, a facile, cost-effective, rapid, single-step synthesis of Ag–Cu decorated ZnO nanoflower-like composites (NFLCs) for electrochemical sensing of dopamine. Mater. Adv. 2(18), 5986–5996 (2020)

    Article  Google Scholar 

  43. L. Shi, Z. Wang, L. Bai, G. Yang, Preparation of 3D nanoflower-like ZnO/graphene oxide decorated with Au@ AuPt bimetallic nanoparticles for electrochemical determination of doxorubicin hydrochloride. Int. J. Electrochem. Sci. 17, 2 (2022)

    Google Scholar 

  44. A. Umar, M.S. Akhtar, H. Algadi, A.A. Ibrahim, M.A. Alhamami, S. Baskoutas, Highly sensitive and selective eco-toxic 4-nitrophenol chemical sensor based on Ag-doped ZnO nanoflowers decorated with nanosheets. Molecules 26(15), 4619 (2021)

    Article  CAS  Google Scholar 

  45. Y. Song, F. Chen, Y. Zhang, S. Zhang, F. Liu, P. Sun, X. Yan, G. Lu, Fabrication of highly sensitive and selective room-temperature nitrogen dioxide sensors based on the ZnO nanoflowers. Sens. Actuators B Chem. 287, 191–198 (2019)

    Article  CAS  Google Scholar 

  46. A.K. Zak, W.A. Majid, M. Darroudi, R. Yousefi, Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater. Lett. 65(1), 70–73 (2011)

    Article  CAS  Google Scholar 

  47. C. Daka, R. Mukherjee, Synthesis and characterization of zinc oxide (ZnO) nanoparticles & Tris (8-Hydroxyquinoline) aluminium (Alq3) as material constituents for fabrication of Alq3/ZnO nanocomposite systems. Am. J. Mater. Sci. 11(1), 1–9 (2021)

    Google Scholar 

  48. S.N. Shah, S.I. Ali, S.R. Ali, M. Naeem, Y. Bibi, S.R. Ali, S.M. Raza, Y. Khan, S.K. Sherwani, Egypt. J. Basic Appl. Sci. 12, 205–210 (2016)

    CAS  Google Scholar 

  49. M. Kooti, A. Naghdi Sedeh, Microwave-assisted combustion synthesis of ZnO nanoparticles. J. Chem. 2013, 1–4 (2013)

    Article  CAS  Google Scholar 

  50. V. Pushpanathan, D. Suresh Kumar, A novel zinc (II) macrocycle-based synthesis of pure ZnO nanoparticles. J. Nanostruct. Chem. 4(4), 95–101 (2014)

    Article  Google Scholar 

  51. A.J. Bard, L.R. Faulkner, Fundamentals and applications. Electrochem. Methods 2, 580 (2001)

    Google Scholar 

  52. S.N. Oliveira, F.W. Ribeiro, C.P. Sousa, J.E.S. Soares, H.B. Suffredini, H. Becker, P. de Lima-Neto, A.N. Correia, Imipramine sensing in pharmaceutical formulations using boron-doped diamond electrode. J. Electroanal. Chem. 788, 118–124 (2017)

    Article  CAS  Google Scholar 

  53. S.Z. Mohammadi, E. Reiahipour, F. Mosazadeh, Screen-printed electrodes modified with magnetic core-shell nanoparticles film for the development of a sensor for imipramine detection. Anal. Bioanal. Electrochem. 10(3), 383–393 (2018)

    CAS  Google Scholar 

  54. A. Lakshmi, C. Vedhi, Synthesis and characterization of poly (3-hexylthiophene) and used as modified electrode for determination of antidepressants in pharmaceutical formulations and urine samples. J. Electrochem. Soc. 160(4), 252 (2013)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any competing interests.

Author information

Authors and Affiliations

Authors

Contributions

All the authors RZ, TS and AM, equally contributed.

Corresponding authors

Correspondence to Tayebeh Shamspur or Ali Mostafavi.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaimbashi, R., Shamspur, T. & Mostafavi, A. Hydrothermal synthesis of ZnO nanoflowes for rapid detection of sertraline and imipramine using the modified screen-printed electrode. J Mater Sci: Mater Electron 33, 19711–19722 (2022). https://doi.org/10.1007/s10854-022-08677-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08677-w

Navigation