Skip to main content
Log in

Electrochemical determination of l-vanillin using copper hexacyanoferrate film modified gold nanoparticle graphite-wax composite electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A simple and sensitive electrochemical determination of l-vanillin (VA), a powerful anti-microbial agent and a commonly employed food preservative was investigated using copper hexacyanoferrate (CuHCF) film modified on 2-mercaptoethylamine functionalized colloidal gold nanoparticles (colloid-Au) graphite-wax composite electrode. As achieved surface modification was characterized using confocal Raman spectroscopy studies which gave rise to peaks at 351, 493, 807 and 2048 cm−1 that corresponds to the characteristics vibrational modes of ν(Fe–C ≡N–Cu), ν(Cu–N), ν(Fe–C) and ν(–C≡N) for the CuHCF film. Further, the elemental analysis investigated using X-ray photoelectron spectroscopy confirms the presence of 2p peaks of Cu (II), Fe(II) and 1 s edge peaks of N for the CuHCF film modified electrode. The modified electrode exhibited a high sensitivity of 0.1817 μA μM−1 at a lower detection potential of 0.68 V towards the VA determination and the limit of detection was observed to be 2.53 × 10−7 M (S/N = 3). The VA content in commercial roasted coffee beans was also examined with the proposed sensor and the results were found to be satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.J. Fitzgeral, M. Stratford, A. Narbad, Int. J. Food Microbiol. 86, 113–122 (2003)

    Article  Google Scholar 

  2. H. Ketli, L.S. Yazan, N. Ismail, M. Ismail, Food Chem. Toxicol. 49, 25–30 (2011)

    Article  Google Scholar 

  3. H.G. Sammons, R.T. Williams, J. Biochem. 35, 1175–1189 (1941)

    Article  Google Scholar 

  4. N.J. Walton, M.J. Mayer, A. Narbad, Phytochemistry 63, 505–515 (2003)

    Article  Google Scholar 

  5. J. Adedeji, T.G. Hartman, C. Ho, Perfum. Flavor. 18, 25 (1993)

    Google Scholar 

  6. G. Lamprecht, F. Pichlmayer, E.R. Schmid, J. Agric. Food Chem. 42, 1722–1727 (1994)

    Article  Google Scholar 

  7. A. Herrmann, M. Stockli, J. Chromgr. 246, 313–316 (1982)

    Article  Google Scholar 

  8. A. Scharrer, A. Mosandi, Dtsch. Lebensm. Rundsch. 97, 449–456 (2001)

    Google Scholar 

  9. M. Ohashi, H. Omae, M. Hashida, Y. Sowa, S. Imai, J. Chromgr. A 1138, 262–267 (2007)

    Article  Google Scholar 

  10. W. Tao, D. Pan, Y. Liu, L. Nie, S. Yao, J. Electroanal. Chem. 572, 109–117 (2004)

    Article  Google Scholar 

  11. F. Wang, J. Wang, H. Chen, S. Dong, J. Electroanal. Chem. 600, 265–274 (2007)

    Article  Google Scholar 

  12. P. Deng, Z. Xu, R. Zeng, C. Ding, Food Chem. 180, 156–163 (2015)

    Article  Google Scholar 

  13. V. Veeramani, R. Madhu, S.M. Chem, P. Veerakumar, J.J. Syu, S.B. Liu, New J. Chem. 39, 9109–9115 (2015)

    Article  Google Scholar 

  14. G. Ziyatdinova, E. Kozlova, E. Ziganshina, H. Budnikov, Monatshefte fur Chem. 147, 191–200 (2016)

    Article  Google Scholar 

  15. L. Shang, F. Zhao, B. Zeng, Food Chem. 151, 53–57 (2014)

    Article  Google Scholar 

  16. X. Wang, C. Luo, L. Li, H. Duan, RSC Adv. 5, 92932–92939 (2015)

    Article  Google Scholar 

  17. F. Bettazzi, I. Palchetti, S. Sisalli, M. Mascini, Anal. Chim. Acta 555, 134–138 (2006)

    Article  Google Scholar 

  18. L. Agui, J.E. Lopez-Guzman, A. Gonzalez-Cortes, P. Yanez-Sedeno, J.M. Pingarron, Anal. Chim. Acta 385, 241–248 (1999)

    Article  Google Scholar 

  19. J.L. Hardcastle, C.J. Paterson, R.G. Compton, Electroanalysis 13, 899–905 (2001)

    Article  Google Scholar 

  20. E.G. Cookeas, C.E. Efstathiou, Analyst 117, 1329–1334 (1992)

    Article  Google Scholar 

  21. M. Luque, E. Luque-Perez, A. Rios, M. Valcarce, Anal. Chim. Acta 410, 127–134 (2000)

    Article  Google Scholar 

  22. P. Prabhu, R.S. Babu, S.S. Narayanan, Coll. Surf. B 87, 103–108 (2011)

    Article  Google Scholar 

  23. K.R. Brown, D.G. Walter, M.J. Natan, Chem. Mater. 12, 306–313 (2000)

    Article  Google Scholar 

  24. J. Wright, M.M. Barsan, I.S. Butler, J. Fitzpatrick, D.F.R. Gilson, M.O. Adebajo, R.L. Frost, J. Raman Spectrosc. 42, 1562–1566 (2011)

    Article  Google Scholar 

  25. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Surf. Interface Anal. 36, 1564–1574 (2004)

    Article  Google Scholar 

  26. S. Tricard, F. Charra, T. Mallah, Dalton Trans. 42, 15835–15845 (2013)

    Article  Google Scholar 

  27. P. Semmelroch, G. Laskawy, I. Blank, W. Groscht, Flavour. Fragr. J. 10, 1–7 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

PP and SSN acknowledges the financial assistance from University Grants Commission (UGC), New Delhi, India by the way of Project Fellow and Basic Scientific Research (BSR) fellowships and Department of Science & Technology for DST-PURSE program in support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangilimuthu Sriman Narayanan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, P., Babu, R.S. & Narayanan, S.S. Electrochemical determination of l-vanillin using copper hexacyanoferrate film modified gold nanoparticle graphite-wax composite electrode. J Mater Sci: Mater Electron 30, 9955–9963 (2019). https://doi.org/10.1007/s10854-019-01335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01335-8

Navigation