Skip to main content

Advertisement

Log in

Structural, optical, electrical properties, and relative humidity sensor application of PVA/Dextrin polymeric blend loaded with silicon dioxide nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the current study, polymer composite films (PCFs) of polyvinyl alcohol (PVA) and Dextrin (60/40) wt% without and with 0.03 and 0.06 wt% silicon dioxide nanoparticles (SiO2NPs) were synthesized via casting way. The structural properties of the matrix polymer blend (MPB) were investigated using X-ray diffraction and revealed an amorphous structure. However, some kind of crystallinity has appeared after embedding the SiO2NPs. The chemical functional groups were analyzed via FTIR spectra. The surface morphology characteristics were performed utilizing an optical microscope (OPM), and the images showed that SiO2NPs were well diffused in MPB without any agglomerations. The optical properties were studied in the wavelength range between 190 and 1100 nm. Up to 97% of UV rays were blocked by PCFs at λ = 270 nm and the absorption edges decreased from 4.05 to 3.80 eV. The values of the allowed and forbidden energy gap (Eg) decreased from 4.18 to 3.75 eV and from 3.98 to 3.73 eV, respectively, with the existence of the NPs. In addition, the electrical conductivity (σac) values were increased with the increase in frequency f and NPs content. The use of SiO2NPs has shown highly improved dielectric and energy dissipation characteristics and has a high sensitivity to relative humidity in various NPs ratios, temperatures, time and RH ranges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the article.

References

  1. S. Mitchell, An introduction to materials engineering and science (Wiley, Hoboken, 2004), pp. 99–100

    Google Scholar 

  2. X. Liu et al., Synthesis of ultrasmall silicananoparticles for application as deep-ultraviolet antireflec-tion coatings. Appl. Surf. Sci. 420, 180–185 (2017)

    Article  CAS  Google Scholar 

  3. S. Ricardo et al., Preparation of modified paints withnano-structured additives and its potential applications. Emerg. Polym. Based Nanocompos. 10, 1–17 (2020)

    Google Scholar 

  4. Y. Sakai et al., Humidity sensors based on polymer thin films. Sens. Actuators B Chem. 35, 85–90 (2006)

    Article  Google Scholar 

  5. S. Yunpeng et al., Surface acoustic wave humidity sensor based on three-dimensional architecture graphene/PVA/SiO2 and its application for respiration monitoring. Sens. Actuators B Chem. 308, 127693 (2020)

    Article  CAS  Google Scholar 

  6. M. Emran et al., Polyvinyl-alcohol (PVA)-based RF humidity sensor in microwave frequency. Prog. Electromagn. Res. B. 54, 149–166 (2013)

    Article  Google Scholar 

  7. Y. Jeong et al., Humidity sensors based on titanium oxide/polyvinyl alcohol composite nanofibers via electrospinning. Textile Science and Engineering. 54, 1–7 (2017)

    Article  CAS  Google Scholar 

  8. L. Katerina et al., Amphiphilic poly(vinyl alcohol) copolymers designed for optical sensor applications-synthesis and properties. Optical Thin Films Struct. 10, 460 (2020)

    Google Scholar 

  9. M. Yang, K. Chen, Humidity sensors using polyvinyl alcohol mixed with electrolytes. Sens. Actuators B. 49, 240–247 (1998)

    Article  CAS  Google Scholar 

  10. M. Penza, G. Cassano, Relative humidity sensing by PVA coated dual resonator SAW oscillator. Sens. Actuators B. 68, 300–306 (2000)

    Article  CAS  Google Scholar 

  11. Z. Rittersma et al., A novel surface-micromachined capacitive porous silicon humidity sensor. Sens. Actuators B. 68, 210–217 (2000)

    Article  CAS  Google Scholar 

  12. T. Harpster, B. Stark, K. Najafi, A passive wireless integrated humidity sensor. Sens. Actuators A 95, 100–107 (2002)

    Article  CAS  Google Scholar 

  13. C. Finch, Polyvinyl alcohol: developments, 2nd edn. (Wiley, Hoboken, 1992)

    Google Scholar 

  14. Z. Xiaodi et al., Multi-interface self-assembling on MXenes skeleton towards wideband electromagnetic dissipation. Mater. Today Phys. 24, 100685 (2022)

    Article  CAS  Google Scholar 

  15. H. Farahani et al., Humidity sensors principle, mechanism, and fabrication. Technologies 14, 7881–7939 (2014)

    Google Scholar 

  16. C. Zhao et al., High-performance humidity sensor based on a polyvinyl alcohol-coated photonic crystal cavity. Opt. Letter. 41, 5515–5518 (2016)

    Article  CAS  Google Scholar 

  17. M. Amin, N. Karmakar, B. Winther, Polyvinyl-alcohol (PVA)-based RF humidity Sensor in microwave frequency. Prog. Electromagn. Res. B. 54, 149–166 (2013)

    Article  Google Scholar 

  18. J. Jang, J. Han, Cylindrical relative humidity sensor based on poly-vinyl alcohol (PVA) for wearable computing devices with enhanced sensitivity. Sensors Actuators A Phys. 261, 268–273 (2017)

    Article  CAS  Google Scholar 

  19. K. Ogura et al., Response of protonic acid-doped poly(o-Anisidine)/poly(Vinyl Alcohol) Composites to relative humidity and role of dopant anions. J. Polym. Sci. Part A. 38, 4343–4352 (2000)

    Article  CAS  Google Scholar 

  20. S. Alam et al., A sensitive inexpensive SAW sensor for wide range humidity measurement. IEEE Sens. 20, 546–551 (2020)

    Article  CAS  Google Scholar 

  21. H. Lin et al., Relative humidity sensor based on FISM-SMS fiber structure coated with PVA film. Optik 207, 164320 (2020)

    Article  CAS  Google Scholar 

  22. P. Haas, T. Hill, An introduction to the chemistry of plants, 2nd edn. (Hill, London, 1993)

    Google Scholar 

  23. J. Salway, Medical biochemistry at a glance, 3rd edn. (Blackwell Publishing, Hoboken, 2012)

    Google Scholar 

  24. T. Fukuda, W. Menz, Handbook of Sensors and Actuators, Micro Mechanical Systems - Principles and Technology. (Science Direct, 1998), pp. 1–268

  25. N. Mohammadreza et al., Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Compos. B Eng. 215, 108845 (2021)

    Article  CAS  Google Scholar 

  26. M. Josef et al., Silica nanoparticles from Coir Pith synthesized by acidic sol-gel method improve germination economics. Polymers 14, 266 (2022)

    Article  CAS  Google Scholar 

  27. Z. Zhenyu et al., Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity. Mater. Sci. Eng. C 49, 251–255 (2015)

    Article  CAS  Google Scholar 

  28. M. Shakir et al., Nano-hydroxyapatite/chitosan-starch nanocomposite as a novel bone construct: synthesis and in vitro studies. Int. J. Biol. Macromol. 80, 282–292 (2015)

    Article  CAS  Google Scholar 

  29. A. Mohammad et al., Efficient treatment of lead-containing wastewater by hydroxyapatite/chitosan nanostructures. Arab J. Chem. 10, 683–690 (2017)

    Article  CAS  Google Scholar 

  30. H. Zhao et al., Preparation and characterization of nano-hydroxyapatite/chitosan composite with enhanced compressive strength by urease-catalyzed method. Mater. Lett. 116, 293–295 (2014)

    Article  CAS  Google Scholar 

  31. S. Nagireddi et al., Pd(II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. Int. J. Biol. Macromol. 94, 72–84 (2017)

    Article  CAS  Google Scholar 

  32. M. Elabbasy et al., Structural, morphological features, and antibacterial behavior of PVA/PVP polymeric blends doped with silver nanoparticles via pulsed laser ablation. J. Marter. Res. Technol. 13, 291–300 (2021)

    Article  CAS  Google Scholar 

  33. K. Abdali, Structural, morphological, and Gamma Ray Shielding (GRS) characterization of HVCMC/PVP/PEG polymer blend encapsulated with silicon dioxide nanoparticles. SILICON 14, 6–10 (2022). https://doi.org/10.1007/s12633-022-01678-8

    Article  CAS  Google Scholar 

  34. A. Al-Zuhairi et al., Synthesis of hyperbranched polymers and study its optical properties. J. Eng. Appl. Sci. 12, 7800–7804 (2017)

    CAS  Google Scholar 

  35. A. Al-Khalaf et al., Preparation and structural properties of liquid crystalline materials and its transition metals complexes. Asian J. Chem. 31(2), 393–395 (2019)

    Article  CAS  Google Scholar 

  36. K. Abdali et al., Enhancing some physical properties of cosmetic face powders. J. Global Pharma Technol. 10, 75–78 (2018)

    CAS  Google Scholar 

  37. B. Max, W. Emil, Principles of optics, 7th edn. (CUP Archive, Cambridge, 1999)

    Google Scholar 

  38. N. Mott, R. Gurney, Electronic processes in ionic crystals, 2nd edn. (Oxford University Press, London, 1940)

    Google Scholar 

  39. A. Abdelghany et al., Impact of in situ preparation of CdS filled PVP nano-composite. Spectrochim. Acta Part A. 130, 302–308 (2014)

    Article  CAS  Google Scholar 

  40. D. Hegazy et al., Effect of Ni nano particles on thermal, optical and electrical behavior of irradiated PVA/AAc films. Arab. J. Nucl. Sci. Appl. 47, 41–52 (2014)

    Google Scholar 

  41. H. Saadi et al., Electrical conductivity improvement of (Fe + Al) co-doped ZnO nanoparticles for optoelectronic applications. J. Mater. Sci. 33, 8065–8085 (2022)

    CAS  Google Scholar 

  42. R. Bari et al., Electronic properties of polyvinyl alcohol/TiO2/SiO2 nanocomposites. Bio Interface Res. Appl. Chem. 10, 6427–6435 (2020)

    Article  Google Scholar 

  43. L. Chen et al., Microwave electronics: measurement and materials characterization (Wiley, Hoboken, 2004). (eq. (1.15))

    Book  Google Scholar 

  44. V. Mohan et al., Optical and electrical properties of pure and doped PEO polymer electrolyte films. Soft Mater. 5, 33–46 (2007)

    Article  CAS  Google Scholar 

  45. K. Ngai et al., A review of polymer electrolytes: fundamental, approaches and applications. Ionics (Kiel) 22, 1259–1279 (2016)

    Article  CAS  Google Scholar 

  46. A. Said et al., Enhancing the electrical and physical nature of high voltage XLPE cable dielectric using different nanoparticles. J. Mater. Sci. 33, 7435–7443 (2022)

    CAS  Google Scholar 

  47. H. Sharma et al., Structural, electrical, and magnetic studies of Cu2+ substituted MnFe2O4 nanoferrites synthesized via solution combustion technique. J. Mater. Sci. 33, 7528–7542 (2022)

    CAS  Google Scholar 

  48. S. Nicole et al., Effect of polyaniline on the structural conductivity and dielectric properties of chitosan carbohydrate polymer. Technol. Appl. 2, 100129 (2021)

    Google Scholar 

  49. X. Wang et al., Lattice vibrational characteristics, crystal structures, and dielectric properties of LiMnPO4 microwave dielectric ceramics as a function of sintering temperature. J. Mater. Sci. 33, 7708–7717 (2022)

    CAS  Google Scholar 

  50. A. Al-Khafaji et al., Investigation of frequency- dependent dielectric properties of ZnO nanorods grown on Si wafer: In/ZnO/p-Si heterostructure. J. Mater. Sci. 33, 8247–8255 (2022)

    CAS  Google Scholar 

  51. S. Pratibha, S. Shukla, Structurally optimized cupric oxide/polyaniline nanocomposites for efficient humidity sensing. Surf. Interfaces 18, 1–7 (2020)

    Google Scholar 

  52. Peter I., Ratio of surface area to volume in nanotechnology and nanoscience, basic nanomechanics series. (Petra Books, 2011). ASIN:B005T1S6JC

  53. G. Veeresh et al., Humidity sensing behaviour of rubidium-doped magnesium ferrite for sensor applications. J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-022-08131-x

    Article  Google Scholar 

  54. A. Waqas et al., Highly sensitive humidity sensors based on polyethylene oxide/CuO/multi walled carbon nanotubes composite nanofibers. Materials (Basel) 14, 1037 (2021)

    Article  CAS  Google Scholar 

  55. L. Dan, L. Anastasia, Flexible and stretchable temperature sensors fabricated using solution-processable conductive polymer composites. Adv. Healthcare Mater. 9, 2000380 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Hikmat Banimuslem for editing.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Karar Abdali.

Ethics declarations

Conflict of interest

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdali, K. Structural, optical, electrical properties, and relative humidity sensor application of PVA/Dextrin polymeric blend loaded with silicon dioxide nanoparticles. J Mater Sci: Mater Electron 33, 18199–18208 (2022). https://doi.org/10.1007/s10854-022-08676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08676-x

Navigation