Skip to main content
Log in

Study of the structural properties and temperature-dependent hopping conductivity mechanism to the analysis of nonlinearity exponent in Nd0.7−xCexSr0.3MnO3 manganites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, we used a solid-state reaction method for the fabrication of the Nd0.7−xCexSr0.3MnO3 (with x = 0 and 0.15) manganite and study of its electrical as well as nonlinear conduction properties. The structural properties of the fabricated orthorhombic distorted perovskite materials were analysed using the Rietveld refinement and Williamson–Hall (W–H) plot from X-ray diffraction measurements. The metal–insulator transition temperature (TMI) shifts to lower temperatures side as the resistivity of the Nd0.7−xCexSr0.3MnO3 compounds increases, indicating that the metal–insulator transition temperature shifts to lower temperatures as the Ce substitution increases. By modifying the zero-frequency Ohmic conductance Σ0 by temperature, the real component of ac conductance Σ(T, f) of these polycrystalline manganite systems was measured as a function of temperature (T). The Σ(T, f) remnants nearly constant to the value Σ0 up to a given onset frequency (fc) and grow from Σ0 when frequency is increased from fc at a stable T. The presence of a general scaling framework for the ac conductance may be seen in the experimental data for Σ(T, f) at various temperatures, which falls on the same universal master curve. The fc scales from 0 to 1 as \({{f}_{c}\sim \Sigma }_{0}^{{x}_{f}}\), where xf is the nonlinearity exponent describing the onset. With the help of ac conduction data, it’s been determined that xf is particularly phase sensitive and may be used to characterise the many phases in manganite systems that result from temperature variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article.

References

  1. P. Mandal, S. Das, Transport properties of Ce-doped RMnO3 (R=La, Pr, and Nd) manganites. Phys. Rev. B 56, 15073 (1997). https://doi.org/10.1103/PhysRevB.56.15073

    Article  CAS  Google Scholar 

  2. J.-S. Kang, Y.J. Kim, B.W. Lee, C.G. Olson, B.I. Min, The valence state of Ce in electron-doped manganites: La0.7Ce0.3MnO3. J. Phys. Condens. Matter 13, 3779 (2001). https://doi.org/10.1088/0953-8984/13/16/308

    Article  CAS  Google Scholar 

  3. S. Zhang, S. Tan, W. Tong, Y. Zhang, Magnetic properties in the electron-doped bulk manganites Nd1−xCexMnO3. Phys. Rev. B 72, 014453 (2005). https://doi.org/10.1103/PhysRevB.72.014453

    Article  CAS  Google Scholar 

  4. S. Yunoki, J. Hu, A.L. Malvezzi, A. Moreo, N. Furukawa, E. Dagotto, Phase separation in electronic models for manganites. Phys. Rev. Lett. 80, 845 (1998). https://doi.org/10.1103/PhysRevLett.80.845

    Article  CAS  Google Scholar 

  5. E. Dagotto, The Physics of Manganites and Related Compounds (Springer, Berlin, 2003)

    Google Scholar 

  6. D. Jana, U.N. Nandi, A Statistical Description of Electrical Transport in Disordered System (LAMBERT Academic Publishing GmbH and Co. KG, Saarbrucken, 2011)

    Google Scholar 

  7. U.N. Nandi, D. Jana, D. Talukdar, Scaling description of non-ohmic direct current conduction in disordered systems. Prog. Mat. Sci. 71, 1 (2015). https://doi.org/10.1016/j.pmatsci.2014.12.001

    Article  Google Scholar 

  8. D.M. Edwards, Ferromagnetism and electron-phonon coupling in the manganites. Adv. Phys. 51, 1259–1318 (2002). https://doi.org/10.1080/00018730210140805

    Article  CAS  Google Scholar 

  9. C. Zener, Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951). https://doi.org/10.1103/PhysRev.81.440

    Article  CAS  Google Scholar 

  10. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951). https://doi.org/10.1103/PhysRev.82.403

    Article  CAS  Google Scholar 

  11. V. Caignaert, A. Maignan, B. Raveau, Up to 50 000 per cent resistance variation in magnetoresistive polycrystalline perovskites Ln23Sr13MnO3 (Ln=Nd; Sm). Solid State Commun. 95, 357 (1995). https://doi.org/10.1016/0038-1098(95)00291-X

    Article  CAS  Google Scholar 

  12. D.N.H. Nam, R. Mathieu, P. Nordblad, N.V. Khiem, N.X. Phuc, Ferromagnetism and frustration in Nd0.7Sr0.3MnO3. Phys. Rev. B 62, 1027 (2000). https://doi.org/10.1103/PhysRevB.62.1027

    Article  CAS  Google Scholar 

  13. M. Pattabiraman, G. Rangarajan, P. Muruguraj, Electrical conduction through bond percolation in Nd0.67Sr0.33MnO3. Solid State Commun 132, 7 (2004). https://doi.org/10.1016/j.ssc.2004.07.021

    Article  CAS  Google Scholar 

  14. T.L. Phan, N.V. Khiem, N.X. Phuc, S.C. Yu, Electrical and magnetic behaviors in Nd0.7Sr0.3MnO3 with different annealing periods. J. Magn. Magn. Matter. 304, e334–e336 (2006). https://doi.org/10.1016/j.jmmm.2006.02.047

    Article  CAS  Google Scholar 

  15. C.P. Yang, S.S. Chen, Q. Dai, D.H. Guo, H. Wang, Spin-dependent electroresistance in Nd0.67Sr0.33MnOy(y<3.0). Acta. Phys. Sin. 56, 4908 (2007)

    Article  CAS  Google Scholar 

  16. Y. Ying, J.Y. Fan, L. Pi, B. Hong, S. Tan, Y.H. Zhang, The effect of Ga doping in Nd0.7Sr0.3MnO3 system. Solid State Commun. 144, 300 (2007). https://doi.org/10.1016/j.ssc.2007.09.002

    Article  CAS  Google Scholar 

  17. H. Kuwahara, Y. Tomioka, A. Asmitsu, Y. Moritomo, Y. Tokura, A first-order phase transition induced by a magnetic field. Science 270, 961 (1995). https://doi.org/10.1126/science.270.5238.961

    Article  CAS  Google Scholar 

  18. X.J. Liu, E.Y. Jiang, Z.Q. Li, B.L. Li, W.R. Li, A. Yu, H.L. Bai, Magnetic, electrical transport and electron spin resonance studies of charge-ordered Nd0.75Na0.25MnO3. Physica B 348, 146 (2004). https://doi.org/10.1016/j.physb.2003.11.084

    Article  CAS  Google Scholar 

  19. Z.Q. Li, H. Liu, X.D. Liu, H.L. Bai, C.Q. Sun, E.Y. Jiang, Magnetic and electronic properties of charge ordered Nd0.8Na0.2MnO3. J. Magn. Magn. Matter 284, 133 (2004). https://doi.org/10.1016/j.jmmm.2004.06.028

    Article  CAS  Google Scholar 

  20. T. Tang, C. Tien, B.Y. Hou, Electrical transport and magnetic properties of Nd1−xNaxMnO3 manganites. J. Alloys Comp. 461, 42 (2008). https://doi.org/10.1016/j.jallcom.2007.07.052

    Article  CAS  Google Scholar 

  21. T. Yanagida, H. Tanaka, T. Kawai, E. Ikenaga, M. Kobata, J.J. Kim, K. Kobayashi, Magnetism, microstructure, and photoelectron spectroscopy of Nd0.7Ce0.3MnO3 thin films. Phys. Rev. B 73, 132503 (2006). https://doi.org/10.1103/PhysRevB.73.132503

    Article  CAS  Google Scholar 

  22. S. Vadnala, S. Asthana, P. Pal, S. Srinath, Influence of Nd substitution by La in Nd0.7Sr0.3MnO3 on structural and transport properties for sensing applications. ISRN Mater Sci. 2013, 728195 (2013). https://doi.org/10.1155/2013/728195

    Article  CAS  Google Scholar 

  23. G. Venkataiah, V. Prasad, P. Venugopal Reddy, Anomalous variation of magnetoresistance in Nd0.67−yEuySr0.33MnO3 manganites. Solid State Commun. 141(2), 73–78 (2007). https://doi.org/10.1016/j.ssc.2006.09.054

    Article  CAS  Google Scholar 

  24. S. Kundu, T.K. Nath, Evidence of electronic phase arrest and glassy ferromagnetic behaviour in (Nd0.4Gd0.3)Sr0.3MnO3 manganite: comparative study between bulk and nanometric samples. J. Phys. Condens. Matter. 23, 356001 (2011). https://doi.org/10.1088/0953-8984/23/35/356001

    Article  CAS  Google Scholar 

  25. L. Ling, J. Fan, L. Pi, S. Tan, Y. Zhang, Effect of magnetism and average radius at A-site on TC in Nd0.6Ln0.1Sr0.3MnO3 (Ln=La, Pr, Gd, Dy) system. Solid State Commun. 145, 11 (2008). https://doi.org/10.1016/j.ssc.2007.10.008

    Article  CAS  Google Scholar 

  26. N.V. Khiem, L.V. Bau, L.H. Son, N.X. Phuc, D.N.H. Nam, Influence of A-site cation size on the magnetic and transport properties of (Nd1−yYy)0.7Sr0.3MnO3 (0⩽y⩽0.42). J. Magn. Magn. Mater. 262, 490 (2003). https://doi.org/10.1016/S0304-8853(03)00083-0

    Article  CAS  Google Scholar 

  27. R. Bellouz, S. Kallel, K. Khirouni, O. Pena, M. Oumezzine, Structural, electrical conductance and complex impedance analysis of (Nd1−xCex)0.7Sr0.3MnO3 (0≤x≤0.20) perovskite. Ceram. Int. 41(2A), 1929 (2015). https://doi.org/10.1016/j.ceramint.2014.10.001

    Article  CAS  Google Scholar 

  28. Y. Slimani, M.A. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal, F. Ben Azzouz, Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceram. Int. 45(6), 6828–6835 (2019). https://doi.org/10.1016/j.ceramint.2018.12.176

    Article  CAS  Google Scholar 

  29. Y. Slimani, E. Hannachi, M. Ben Salem, F. Ben Azzouz, Excess conductivity study in nano-CoFe2O4-added YBa2Cu3O7−d and Y3Ba5Cu8O18±x superconductors. J. Supercond. Nov. Magn. 28, 3001–3010 (2015). https://doi.org/10.1007/s10948-015-3144-0

    Article  CAS  Google Scholar 

  30. Y. Slimani, E. Hannachi, A. Ekicibil, M.A. Almessiere, F. Ben Azzouz, Investigation of the impact of nano-sized wires and particles TiO2 on Y-123 superconductor performance. J. Alloys Compd. 781, 664–673 (2019). https://doi.org/10.1016/j.jallcom.2018.12.062

    Article  CAS  Google Scholar 

  31. E. Hannachi, M.A. Almessiere, Y. Slimani, A. Baykal, F. Ben Azzouz, AC susceptibility investigation of YBCO superconductor added by carbon nanotubes. J. Alloys Compd. 812, 152150 (2020). https://doi.org/10.1016/j.jallcom.2019.152150

    Article  CAS  Google Scholar 

  32. M.K. Ben Salem, E. Hannachi, Y. Slimani, A. Hamrita, M. Zouaoui, L. Bessais, M. Ben Salem, F. Ben Azzouz, SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy. Ceram. Int. 40(3), 4953–4962 (2014). https://doi.org/10.1016/j.ceramint.2013.10.103

    Article  CAS  Google Scholar 

  33. R. Algarni, M.A. Almessiere, Y. Slimani, E. Hannachi, F. Ben Azzouz, Enhanced critical current density and flux pinning traits with Dy2O3 nanoparticles added to YBa2Cu3O7d superconductor. J. Alloys Compd. 852, 157019 (2021). https://doi.org/10.1016/j.jallcom.2020.157019

    Article  CAS  Google Scholar 

  34. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 13509–13518 (2019). https://doi.org/10.1007/s10854-019-01718-x

    Article  CAS  Google Scholar 

  35. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 7786–7797 (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  CAS  Google Scholar 

  36. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Manikandan, R. Algarni, A. Baykal, F. Ben Azzouz, Flux pinning properties of YBCO added by WO3 nanoparticles. J. Alloys Compd. 810, 151884 (2019). https://doi.org/10.1016/j.jallcom.2019.15188

    Article  CAS  Google Scholar 

  37. Y. Slimani, S.E. Shirsath, E. Hannachi, M.A. Almessiere, M.M. Aouna, N.E. Aldossary, G. Yasin, A. Baykal, B. Ozçelik, I. Ercan, (BaTiO3)1x + (Co0.5Ni0.5Nb0.06Fe1.94O4)x nanocomposites: structure, morphology, magnetic and dielectric properties. J. Am. Ceram. Soc. 104, 5648–5658 (2021). https://doi.org/10.1111/jace.17931

    Article  CAS  Google Scholar 

  38. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, G. AlFalah, L.F. AlOusi, G. Yasin, M. Iqbal, Study on the addition of SiO2 nanowires to BaTiO3: structure, morphology, electrical and dielectric properties. J. Phys. Chem. Solids 156, 110183 (2021). https://doi.org/10.1016/j.jpcs.2021.110183

    Article  CAS  Google Scholar 

  39. Z. Mu, G. Wei, H. Zhang, L. Gao, Y. Zhao, S. Tang, G. Ji, The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. (2022). https://doi.org/10.1007/s12274-022-4500-6

    Article  Google Scholar 

  40. H.N. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  41. K. Padmavathi, G. Venkataiah, P. Venugopal Reddy, Electrical behavior of some rare-earth-doped Nd0.33Ln0.34Sr0.33MnO3 manganites. J. Magn. Magn. Mater. 309, 237 (2007). https://doi.org/10.1016/j.jmmm.2006.07.006

    Article  CAS  Google Scholar 

  42. C. Krishnamoorthy, K. Sethupathi, V. Sankaranarayanan, R. Nirmala, S.K. Malik, Magnetic and magnetotransport properties of Ce doped nanocrystalline LaMnO3. J. Alloys Compd. 438, 1 (2007). https://doi.org/10.1016/j.jallcom.2006.07.089

    Article  CAS  Google Scholar 

  43. S. Brandstetter, P.M. Derlet, S. Van Petegem, H. Van Swygenhoven, Williamson–Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations. Acta Mater. 56, 165–176 (2008)

    Article  CAS  Google Scholar 

  44. D. Varshney, I. Mansuri, N. Kaurav, W.Q. Lung, Y.K. Kuo, Influence of Ce doping on electrical and thermal properties of La0.7−xCexCa0.3MnO3 (0.0≤x≤0.7) manganites. J. Magn. Magn. Mater. 324, 3276 (2012). https://doi.org/10.1016/j.jmmm.2012.05.028

    Article  CAS  Google Scholar 

  45. G. Jeffrey Snyder, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe, Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996). https://doi.org/10.1103/PhysRevB.53.14434

    Article  Google Scholar 

  46. S.B. Ogale, V. Talyansky, C.H. Chen, R. Ramesh, R.L. Greene, T. Venkatesan, Unusual electric field effects in Nd0.7Sr0.3MnO3. Phys. Rev. Lett. 77, 1159 (1996). https://doi.org/10.1103/PhysRevLett.77.1159

    Article  CAS  Google Scholar 

  47. N. Mott, Conduction in Non-crystalline Materials (Clarendon, Oxford, 1993), pp. 17–23

    Google Scholar 

  48. W. Khan, A.H. Naqvi, M. Gupta, Small polaron hopping conduction mechanism in Fe doped LaMnO3. J. Chem. Phys. 135, 054501–054511 (2011). https://doi.org/10.1063/1.3615720

    Article  CAS  Google Scholar 

  49. M. Viret, L. Ranno, J.M.D. Coey, Magnetic localization in mixed-valence manganites. Phys. Rev. B 55, 8067 (1997). https://doi.org/10.1103/PhysRevB.55.8067

    Article  CAS  Google Scholar 

  50. W.H. Jung, Evaluation of Mott’s parameters for hopping conduction in La0.67Ca0.33MnO3 above Tc. J. Mater. Sci. Lett. 17, 1317–1319 (1998). https://doi.org/10.1023/A:100666520048

    Article  CAS  Google Scholar 

  51. S. Ravi, M. Kar, Study of magneto-resistivity in La1−xAgxMnO3 compounds. Physica B 348, 169 (2004). https://doi.org/10.1016/j.physb.2003.11.087

    Article  CAS  Google Scholar 

  52. A. Osak, Hopping electrical conductivity in ferroelectric Pb[(Fe1/3Sb2/3)xTiyZrz]O3. Ferroelectrics 418(1), 52–59 (2011). https://doi.org/10.1080/00150193.2011.578920

    Article  CAS  Google Scholar 

  53. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993). https://doi.org/10.1016/0079-6786(93)90002-9

    Article  CAS  Google Scholar 

  54. A.K. Roy, A. Singh, K. Kumari, K. Amar Nath, A. Prasad, K. Prasad, Electrical properties and AC conductivity of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramic. ISRN Ceram. (2012). https://doi.org/10.5402/2012/854831

    Article  Google Scholar 

  55. I.S. Ram, S. Kumar, R.K. Singh, P. Singh, K. Singh, Electrical conduction mechanism in Se90−xTe5Sn5Inx (x = 0, 3, 6 and 9) multicomponent glassy alloys. AIP Adv. 5, 087164 (2015). https://doi.org/10.1063/1.4929577

    Article  CAS  Google Scholar 

  56. A. Seeger, P. Lunkenheimer, J. Hemberger, A.A. Mukhin, V. Yu Ivanov, A.M. Balbashov, A. Loidl, J. Phys. Condens. Matter 11, 3273 (1999). https://doi.org/10.1088/0953-8984/11/16/009

    Article  CAS  Google Scholar 

  57. W.K. Lee, J.F. Liu, A.S. Nowick, Limiting behavior of ac conductivity in ionically conducting crystals and glasses: a new universality. Phys. Rev. Lett. 67, 1559 (1991). https://doi.org/10.1103/PhysRevLett.67.1559

    Article  CAS  Google Scholar 

  58. A.S. Nowick, A.V. Vaysleyb, B.S. Lim, Further evidence for a ‘“second universality”’ in alternating-current conductivity relaxation. J. Appl. Phys. 76, 4429 (1994). https://doi.org/10.1063/1.357338

    Article  CAS  Google Scholar 

  59. H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca)TiO3 ceramic. Acta Phys. Pol. A 122, 174 (2012). https://doi.org/10.12693/APhysPolA.122.174

    Article  CAS  Google Scholar 

  60. K.K. Bardhan, R.K. Chakrabarty, Identical scaling behavior of dc and ac response near the percolation threshold in conductor-insulator mixtures. Phys. Rev. Lett. 72, 1068 (1994). https://doi.org/10.1103/PhysRevLett.72.1068

    Article  CAS  Google Scholar 

  61. U.N. Nandi, S. Sircar, A. Karmakar, S. Giri, Nonlinearity exponent of ac conductivity in disordered systems. J. Phys. Condens. Matter 24, 265601 (2012). https://doi.org/10.1088/0953-8984/24/26/265601

    Article  CAS  Google Scholar 

  62. T.N. Ghosh, U.N. Nandi, D. Jana, K. Dey, S. Giri, Nonlinear alternating current conduction in polycrystalline manganites. J. Appl. Phys. 116, 129902 (2014). https://doi.org/10.1063/1.4896740

    Article  CAS  Google Scholar 

  63. T.N. Ghosh, Thesis, Experimental investigation of non ohmic electrical transport in polycrystalline manganite system (2017). http://hdl.handle.net/10603/302392

  64. D. Chakraborty, U.N. Nandi, D. Jana, Md.G. Masud, S. Giri, Magnetic phase characterization of nanocrystalline La2NiMnO6 using alternating current conductance. J. Appl. Phys. 118, 035103 (2015). https://doi.org/10.1063/1.4926745

    Article  CAS  Google Scholar 

  65. Y. Moualhi, H. Rahmouni, K. Khirouni, Usefulness of theoretical approaches and experiential conductivity measurements for understanding manganite-transport mechanisms. Results Phys. 19, 103570 (2020). https://doi.org/10.1016/j.rinp.2020.103570

    Article  Google Scholar 

  66. A.K. Dey, U.N. Nandi, P.K. Maji, R.K. Chakrabarty, Nonlinearity exponent: a phase sensitive parameter in disordered systems. Physica B 582, 412001 (2020). https://doi.org/10.1016/j.physb.2020.412001

    Article  CAS  Google Scholar 

  67. H.E. Taylor, The dielectric relaxation spectrum of glass. Trans. Faraday Soc. 52, 873 (1956). https://doi.org/10.1039/TF9565200873

    Article  CAS  Google Scholar 

  68. B. Roling, A. Happe, K. Funke, M.D. Ingram, Carrier concentrations and relaxation spectroscopy: new information from scaling properties of conductivity spectra in ionically conducting glasses. Phys. Rev. Lett. 78, 2160 (1997). https://doi.org/10.1103/PhysRevLett.78.2160

    Article  CAS  Google Scholar 

  69. K. Funke, B. Roling, M. Lange, Dynamics of mobile ions in crystals, glasses and melts. Solid State Ionics 105, 195–208 (1998). https://doi.org/10.1016/S0167-2738(97)00465-7

    Article  CAS  Google Scholar 

  70. D.L. Sidebottom, Universal approach for scaling the AC conductivity in ionic glasses. Phys. Rev. Lett. 82, 3653 (1999). https://doi.org/10.1103/PhysRevLett.82.3653

    Article  CAS  Google Scholar 

  71. Y. Gefen, W. Shih, R.B. Laibowitz, J.M. Viggiano, Nonlinear behavior near the percolation metal-insulator transition. Phys. Rev. Lett. 57, 3097 (1986). https://doi.org/10.1103/PhysRevLett.57.3097

    Article  CAS  Google Scholar 

  72. R.F. Bianchi, G.F. Leal Ferreira, C.N. Lepienski, R.N. Faria, Alternating electrical conductivity of polyaniline. J. Chem. Phys. 110, 4602 (1999). https://doi.org/10.1063/1.478341

    Article  CAS  Google Scholar 

  73. T.N. Ghosh, U.N. Nandi, S. Chattopadhyay, D. Jana, S.C. Saha, Scaling description of non-Ohmic transport in manganites. Solid State Commun. 152, 1595 (2012). https://doi.org/10.1016/j.ssc.2012.05.014

    Article  CAS  Google Scholar 

  74. U.N. Nandi, Y.Z. Long, D. Chakraborty, Nonlinearity exponent in low dimensional nanotubes and nanowires. Results Phys. 3, 84 (2013). https://doi.org/10.1016/j.rinp.2013.05.003

    Article  Google Scholar 

  75. D. Talukdar, U.N. Nandi, K.K. Bardhan, C.C.B. Bufon, T. Heinzel, A. De, C.D. Mukherjee, Nonlinearity exponents in lightly doped conducting polymers. Phys. Rev. B 84, 054205 (2011). https://doi.org/10.1103/PhysRevB.84.054205

    Article  CAS  Google Scholar 

  76. D. Talukdar, U.N. Nandi, A. Poddar, P. Mandal, K.K. Bardhan, Scaling of non-Ohmic conduction in strongly correlated systems. Phys. Rev. B 86, 165104 (2012). https://doi.org/10.1103/PhysRevB.86.165104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Physics, Department of Electronics of Midnapore College (Autonomous) for various instruments facilities. We thank the CRF, IIT Kharagpur, India for providing the necessary facilities for caring out different measurement work. Authors are also thankful to the Department of Physics, Government General Degree College at Gopiballavpur-II.

Funding

This research is supported by UGC and DST for their constant financial assistance. Author AKB is thankful to Dept. of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, India. Author TNG is thankful for financial support from RUSA 2.0 component: 8 to Midnapore College (Autonomous).

Author information

Authors and Affiliations

Authors

Contributions

TNG assisted the problem of the research, carried out the measurement, and manuscript writing. AKB assisted the measurement, discussed and helped in drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tilak Narayan Ghosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies involving humans and animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, A.K., Ghosh, T.N. Study of the structural properties and temperature-dependent hopping conductivity mechanism to the analysis of nonlinearity exponent in Nd0.7−xCexSr0.3MnO3 manganites. J Mater Sci: Mater Electron 33, 17963–17977 (2022). https://doi.org/10.1007/s10854-022-08658-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08658-z

Navigation