Skip to main content

Advertisement

Log in

Effects of the electric field on microstructure and electrical properties of ZnO–Bi2O3–Co2O3 varistor by flash sintering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dense bulk ZnO–Bi2O3–Co2O3 varistor ceramics were obtained via flash sintering. The effect of electric field on densification, microstructure, and electrical properties of ZnO–Bi2O3-based varistor ceramics, which were under different electric fields by a constant heating flash sintering process was investigated. The results showed that when the electric field was increased from 200 to 350 V/cm, the onset temperature of flash sintering decreased significantly, and the peak power consumption increased. The flash-sintered specimen under the electric field of 200 V/cm at a furnace temperature of 762 °C obtained the highest nonlinear coefficient of 41.1 and the lowest leakage current of 1.57 μA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. D. Xu, L. Shi, Z. Wu, Q. Zhong, X. Wu, Microstructure and electrical properties of ZnO–Bi2O3-based varistor ceramics by different sintering processes. J. Eur. Ceram. Soc. 29, 1789–1794 (2009)

    Article  CAS  Google Scholar 

  2. W. Long, J. Hu, J. Liu, J. He, R. Zong, The effect of aluminum on electrical properties of ZnO varistors. J. Am. Ceram. Soc. 93, 2441–2444 (2010)

    Article  CAS  Google Scholar 

  3. H. Bai, M. Li, Z. Xu, R. Chu, J. Hao, H. Li, C. Chen, G. Li, Influence of SiO2 on electrical properties of the highly nonlinear ZnO–Bi2O3–MnO2 varistors. J. Eur. Ceram. Soc. 37, 3965–3971 (2017)

    Article  CAS  Google Scholar 

  4. Q. Wei, J. He, J. Hu, Y. Wang, Influence of Cr2O3 on the residual voltage ratio of SnO2-based varistor. J. Am. Ceram. Soc. 94, 1999–2002 (2011)

    Article  CAS  Google Scholar 

  5. B. Du, M. Cai, X. Wang, J. Qian, C. He, A. Shui, Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J. Adv. Ceram. 10, 832–842 (2021)

    Article  CAS  Google Scholar 

  6. T. Yan, K. Chen, C. Li, M. Liu, J. Wang, L. Fang, L. Liu, Structure evolution, dielectric, and conductivity behavior of (K0.5Na0.5)NbO3-Bi(Zn2/3Nb1/3)O3 ceramics. J. Adv. Ceram. 10, 809–819 (2021)

    Article  CAS  Google Scholar 

  7. E. Hannachi, Y. Slimani, M. Nawaz, R. Sivakumar, Z. Trabelsi, R. Vignesh, S. Akhtar, M.A. Almessiere, A. Baykal, G. Yasin, Preparation of cerium and yttrium doped ZnO nanoparticles and tracking their structural, optical, and photocatalytic performances. J. Rare. Earth (2022). https://doi.org/10.1016/j.jre.2022.03.020

    Article  Google Scholar 

  8. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci: Mater. El 30, 9520–9530 (2019)

    CAS  Google Scholar 

  9. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 30, 13509–13518 (2019)

    Article  CAS  Google Scholar 

  10. M.H.A. Mhareb, Y. Slimani, Y.S. Alajerami, M.I. Sayyed, E. Lacomme, M.A. Almessiere, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46, 28877–28886 (2020)

    Article  CAS  Google Scholar 

  11. C. Leach, Grain boundary structures in zinc oxide varistors. Acta Mater. 53, 237–245 (2005)

    Article  CAS  Google Scholar 

  12. D.C. Look, H.L. Mosbacker, Y.M. Strzhemechny, L.J. Brillson, Effects of surface conduction on Hall-effect measurements in ZnO. Superlattices Microstruct. 38, 406–412 (2005)

    Article  CAS  Google Scholar 

  13. J. Liang, X. Zhao, J. Sun, L. Ren, R. Liao, L. Yang, W. Li, Enhanced electrical properties of ZnO varistor ceramics by spark plasma sintering: role of annealing. Ceram. Int. 46, 15076–15083 (2020)

    Article  CAS  Google Scholar 

  14. M. Guo, X. Zhao, W. Shi, B. Zhang, K. Wu, J. Li, Simultaneously improving the electrical properties and long-term stability of ZnO varistor ceramics by reversely manipulating intrinsic point defects. J. Eur. Ceram. Soc. 42, 162–168 (2022)

    Article  CAS  Google Scholar 

  15. J. He, S. Li, J. Lin, L. Zhang, K. Feng, L. Zhang, W. Liu, J. Li, Reverse manipulation of intrinsic point defects in ZnO-based varistor ceramics through Zr-stabilized high ionic conducting βIII-Bi2O3 intergranular phase. J. Eur. Ceram. Soc. 38, 1614–1620 (2018)

    Article  CAS  Google Scholar 

  16. D.R. Clarke, Varistor ceramic. J. Am. Ceram. Soc. 82, 485–502 (1999)

    Article  CAS  Google Scholar 

  17. T.R.N. Kutty, S. Ezhilvalavan, Zinc oxide ceramic varistors formulated with barium orthosilicate for operation in the 3–15 V battery range. Mater. Lett. 27, 355–361 (1996)

    Article  CAS  Google Scholar 

  18. R.F.K. Gunnewiek, C.P.F. Perdomo, I.C. Cancellieri, A.L.F. Cardoso, R.H.G.A. Kiminami, Microwave sintering of a nanostructured low-level additive ZnO-based varistor. Ceram. Int. 46, 15044–15053 (2020)

    Article  CAS  Google Scholar 

  19. S. Roy, D. Das, T.K. Roy, Influence of sintering temperature on microstructure and electrical properties of Er2O3 added ZnO–V2O5–MnO2–Nb2O5 varistor ceramics. J. Alloys Compd. 749, 687–696 (2018)

    Article  CAS  Google Scholar 

  20. P. Peng, C. Chen, B. Cui, J. Li, D. Xu, B. Tang, Influence of the electric field on flash-sintered (Zr + Ta) co-doped TiO2 colossal permittivity ceramics. Ceram. Int. 48, 6016–6023 (2022)

    Article  CAS  Google Scholar 

  21. P. Peng, Y.J. Deng, J.P. Niu, L.Y. Shi, Y.Z. Mei, S.M. Du, J. Liu, D. Xu, Fabrication and electrical characteristics of flash-sintered SiO2-doped ZnO–Bi2O3–MnO2 varistors. J. Adv. Ceram. 9, 683–692 (2020)

    Article  CAS  Google Scholar 

  22. B. Kaufmann, T. Billovits, P. Supancic, Observation of an electrical breakdown at ZnO Schottky contacts in varistors. J. Eur. Ceram. Soc. 41, 1969–1974 (2021)

    Article  CAS  Google Scholar 

  23. H. Wang, P. Zhao, L. Chen, L. Li, X. Wang, Energy storage properties of 0.87BaTiO3-0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors with thin dielectric layers. J. Adv. Ceram. 9, 292–302 (2020)

    Article  CAS  Google Scholar 

  24. K. Li, J. Rao, C. Ning, Optimized sintering and mechanical properties of Y-TZP ceramics for dental restorations by adding lithium disilicate glass ceramics. J. Adv. Ceram. 10, 1326–1337 (2021)

    Article  CAS  Google Scholar 

  25. H. Wang, S. Li, K. Wang, X. Chen, H. Zhou, Sintering behaviour and microwave dielectric properties of MgO–2B2O3–xwt%BaCu(B2O5)–ywt%H3BO3 ceramics. J. Adv. Ceram. 10, 1282–1290 (2021)

    Article  CAS  Google Scholar 

  26. R. Peng, Y. Lu, Q. Zhang, Y. Lai, G. Yu, X. Wu, Y. Li, H. Su, H. Zhang, Amelioration of sintering and multi-frequency dielectric properties of Mg3B2O6: a mechanism study of nickel substitution using DFT calculation. J. Adv. Ceram. 10, 1398–1407 (2021)

    Article  CAS  Google Scholar 

  27. M. Cologna, B. Rashkova, R. Raj, Flash sintering of nanograin zirconia in <5 s at 850°C. J. Am. Ceram. Soc. 93, 3556–3559 (2010)

    Article  CAS  Google Scholar 

  28. R. Muccillo, E.N.S. Muccillo, Electric field-assisted flash sintering of tin dioxide. J. Eur. Ceram. Soc. 34, 915–923 (2014)

    Article  CAS  Google Scholar 

  29. S.K. Jha, R. Raj, I.W. Chen, The effect of electric field on sintering and electrical conductivity of titania. J. Am. Ceram. Soc. 97, 527–534 (2014)

    Article  CAS  Google Scholar 

  30. E. Zapata-Solvas, S. Bonilla, P.R. Wilshaw, R.I. Todd, Preliminary investigation of flash sintering of SiC. J. Eur. Ceram. Soc. 33, 2811–2816 (2013)

    Article  CAS  Google Scholar 

  31. J.C. M’Peko, J.S.C. Francis, R. Raj, D. Lupascu, Impedance spectroscopy and dielectric properties of flash versus conventionally sintered yttria-doped zirconia electroceramics viewed at the microstructural level. J. Am. Ceram. Soc. 96, 3760–3767 (2013)

    Article  CAS  Google Scholar 

  32. J.A. Downs, V.M. Sglavo, R. Raj, Electric field assisted sintering of cubic zirconia at 390°C. J. Am. Ceram. Soc. 96, 1342–1344 (2013)

    Article  CAS  Google Scholar 

  33. R. Raj, Joule heating during flash-sintering. J. Eur. Ceram. Soc. 32, 2293–2301 (2012)

    Article  CAS  Google Scholar 

  34. M. Yu, S. Grasso, R. McKinnon, T. Saunders, M.J. Reece, Review of flash sintering: materials, mechanisms and modelling. Adv. Appl. Ceram 116, 24–60 (2016)

    Article  CAS  Google Scholar 

  35. M. Biesuz, V.M. Sglavo, Flash sintering of ceramics. J. Eur. Ceram. Soc. 39, 115–143 (2019)

    Article  CAS  Google Scholar 

  36. L. Guan, J. Li, X. Song, J. Bao, T. Jiang, Graphite assisted flash sintering of Sm2O3 doped CeO2 ceramics at the onset temperature of 25 °C. Scripta. Mater. 159, 72–75 (2019)

    Article  CAS  Google Scholar 

  37. Y. Zhang, J. Luo, Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120 °C. Scripta. Mater. 106, 26–29 (2015)

    Article  CAS  Google Scholar 

  38. B. Cui, J. Niu, P. Peng, L. Shi, S. Du, J. Liu, D. Xu, Flash sintering preparation and electrical properties of ZnO–Bi2O3-M (M = Cr2O3, MnO2 or Co2O3) varistor ceramics. Ceram. Int. 46, 14913–14918 (2020)

    Article  CAS  Google Scholar 

  39. J. Li, L. Guan, W. Zhang, M. Luo, J. Song, X. Song, S. An, Sintering behavior of samarium doped ceria under DC electrical field. Ceram. Int. 44, 2470–2477 (2018)

    Article  CAS  Google Scholar 

  40. Y. Mei, S. Pandey, W. Long, J. Liu, S. Zhong, L. Zhang, S. Du, D. Xu, Processing and characterizations of flash sintered ZnO–Bi2O3–MnO2 varistor ceramics under different electric fields. J. Eur. Ceram. Soc. 40, 1330–1337 (2020)

    Article  CAS  Google Scholar 

  41. J. Niu, H. She, Z. Liu, M. Cheng, J. Xu, J. Liu, G. Chen, B. Tang, D. Xu, A current-controlled flash sintering processing leading to dense and fine-grained typical multi-element ZnO varistor ceramics. J. Alloys Compd. 876, 160124 (2021)

    Article  CAS  Google Scholar 

  42. C. Schmerbauch, J. Gonzalez-Julian, R. Röder, C. Ronning, O. Guillon, L. Gauckler, Flash sintering of nanocrystalline zinc oxide and its influence on microstructure and defect formation. J. Am. Ceram. Soc. 97, 1728–1735 (2014)

    Article  CAS  Google Scholar 

  43. X.L. Phuah, H. Wang, H. Charalambous, S.K. Jha, T. Tsakalakos, X. Zhang, H. Wang, Comparison of the grain growth behavior and defect structures of flash sintered ZnO with and without controlled current ramp. Scripta Mater. 162, 251–255 (2019)

    Article  CAS  Google Scholar 

  44. S. Bernik, N. Daneu, Characteristics of ZnO-based varistor ceramics doped with Al2O3. J. Eur. Ceram. Soc. 27, 3161–3170 (2007)

    Article  CAS  Google Scholar 

  45. S. Bhattacharjee, R. Sarkar, P. Chattopadhyay, A. Banerjee, N.S. Das, D. Das, K.K. Chattopadhyay, Manipulating dielectric relaxation via anisotropic field deviations in perovskite titanate grain–grain boundary heterostructure: a joint experimental and theoretical venture. Appl. Phys. A. 128, 501 (2022)

    Article  CAS  Google Scholar 

  46. S. Bhattacharjee, A. Banerjee, K.K. Chattopadhyay, Field-enhanced polarization in polytype ferric oxides: confronting anisotropy in dielectric ellipsoid dispersion. J. Phys. D Appl. Phys. 54, 295301 (2021)

    Article  CAS  Google Scholar 

  47. A. Wu, Z. Zhu, X. Wang, N. Yan, H. Zhou, R. Huang, G. Ma, Z. Jia, L. Wang, High-performance ZnO varistor ceramics prepared by arc-induced flash sintering with low energy consumption at room temperature. High Voltage 7, 222–232 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The research of flash sintering has been financially supported by the National Natural Science Foundation of China (Grant No. 52072004, 51802003) and Development Program of Anhui Province (No. 2022i01020008), and the State Key Laboratory of Advanced Materials and Electronic Components (No. FHR-JS-202011006).

Author information

Authors and Affiliations

Authors

Contributions

MS: Conceptualization, methodology, investigation, preparation, experiment, writing. JL: Draft visualization, experiment, analyzing writing. JL: Supervision, data curation. JX: Supervision. MJ: Investigation. DX: Guiding. All authors read the paper and commented on the text.

Corresponding author

Correspondence to Dong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Liu, J., Li, J. et al. Effects of the electric field on microstructure and electrical properties of ZnO–Bi2O3–Co2O3 varistor by flash sintering. J Mater Sci: Mater Electron 33, 17900–17911 (2022). https://doi.org/10.1007/s10854-022-08653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08653-4

Navigation