Skip to main content
Log in

Effects of Pb–B–Si–O glass on the microstructures and electrical properties of silver electrode for LTCC application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The co-firing compatibility between green tape and the Ag electrode is a crucial characteristic in low-temperature co-fired ceramic (LTCC) technology and plays a vital role in improving the performance and application status of LTCC device modules. In this work, we studied the effects of lead content on the glass viscosity, the microstructure, and co-firing compatibility of silver electrode film. It was found that the softening point and viscosity of the glass were decreased, and the wettability between the glass and silver was improved with the increase of the lead content, which promoted the co-firing densification and interfacial bonding between the silver electrode film and the ceramic layer. The film presented the best electrical properties co-firing at 875 °C for 15 min, with the resistivity of 1.21 mΩ/sq. And the film was densified. The sintering interface was clear and well bonded. The results showed that an appropriate lead content in glass could effectively improve the interfacial bonding and the electrical properties during co-fired process, providing a new control methodology for realizing co-fired matching of the silver electrode film with low-temperature co-fired ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the study are available from the corresponding author on reasonable request.

References

  1. D. Wang, L. Li, M. Du, Y. Zhan, A low-sintering temperature microwave dielectric ceramic for 5G LTCC applications with ultralow loss. Ceram. Int. 47(20), 28675–28684 (2021)

    Article  CAS  Google Scholar 

  2. B. Synkiewicz-Musialska, D. Szwagierczak, J. Kulawik, N. Pałka, P.R. Bajurko, Impact of additives and processing on microstructure and dielectric properties of willemite ceramics for LTCC terahertz applications. J. Eur. Ceram. Soc. 40(2), 362–370 (2020)

    Article  CAS  Google Scholar 

  3. M.T. Sebastian, H. Jantunen, Low loss dielectric materials for LTCC applications: a review. Int. Mater. Rev. 53(2), 57–90 (2008)

    Article  CAS  Google Scholar 

  4. M. Liu, H. Zhou, H. Zhu, Z. Yue, J. Zhao, Microstructure and dielectric properties of glass/Al2O3 composites with various low softening point borosilicate glasses. J. Mater. Sci. Mater. Electron. 23(12), 2130–2139 (2012)

    Article  CAS  Google Scholar 

  5. H.J. Mao, X.Y. Chen, F.L. Wang, W.J. Zhang, Effects of alkaline earth oxides on the densification and microwave properties of low-temperature fired BaO-Al2O3-SiO2 glass-ceramic/Al2O3 composites. J. Mater. Sci. 54(19), 12371–12380 (2019)

    Article  CAS  Google Scholar 

  6. X. Luo, L. Ren, W. Xie, L. Qian, Y. Wang, Q. Sun, H. Zhou, Microstructure, sintering and properties of CaO-Al2O3-B2O3-SiO2 glass/Al2O3 composites with different CaO contents. J. Mater. Sci. Mater. Electron. 27(5), 5446–5451 (2016)

    Article  CAS  Google Scholar 

  7. D. He, C. Gao, Effect of boron on crystallization, microstructure and dielectric properties of CBS glass-ceramics. Ceram. Int. 44(14), 16246–16255 (2018)

    Article  CAS  Google Scholar 

  8. G.H. Chen, X.Y. Liu, Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics containing ZnO. J. Alloys Compd. 431(1–2), 282–286 (2007)

    Article  CAS  Google Scholar 

  9. W.J. Zhang, F.L. Wang, X.Y. Chen, H.J. Mao, Influence of La/B ratio on the structure, sinterability and crystallization of La2O3-B2O3-CaO glass-ceramics. J. Mater. Sci. Mater. Electron. 30(15), 14805–14812 (2019)

    Article  CAS  Google Scholar 

  10. F. Wang, W. Zhang, X. Chen, H. Mao, Z. Liu, S. Bai, Low temperature sintering and characterization of La2O3-B2O3-CaO glass-ceramic/LaBO3 composites for LTCC application. J. Eur. Ceram. Soc. 40(6), 2382–2389 (2020)

    Article  CAS  Google Scholar 

  11. X. Chen, F. Wang, W. Zhang, Low temperature sintering and dielectric properties of La2O3-B2O3-Al2O3 glass-ceramic/Al2O3 composites for LTCC applications. J. Mater. Sci. Mater. Electron. 30(15), 3098–3106 (2019)

    Article  CAS  Google Scholar 

  12. M. Gruber, I. Kraleva, P. Supancic, R. Danzer, R. Bermejo, A novel approach to assess the mechanical reliability of thin, ceramic-based multilayer architectures. J. Eur. Ceram. Soc. 40(14), 4727–4736 (2020)

    Article  CAS  Google Scholar 

  13. J.H. Jang, Microstructural Effects on Microwave Properties of Low-Temperature Cofired Ceramic Striplines: Experiments and Modeling. J. Am. Ceram. Soc. 87(8), 1466–1470 (2004)

    Article  CAS  Google Scholar 

  14. C.-R. Chang, J.-H. Jean, Effects of Silver-Paste Formulation on Camber Development during the Cofiring of a Silver-Based, Low-Temperature-Cofired Ceramic Package. J. Am. Ceram. Soc. 81(11), 2805–2814 (1998)

    Article  CAS  Google Scholar 

  15. C. Miao, M. Wang, Z. Yue, J. Zhou, Q. Li, Co-firing behavior of ZnTiO3 dielectric ceramics/Ag composites for MLCCs. Ceram. Int. 32(4), 471–474 (2006)

    Article  CAS  Google Scholar 

  16. C.-S. Hsi, Y.-R. Chen, H.-I. Hsiang, Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates. J. Mater. Sci. 46(13), 4695–4700 (2011)

    Article  CAS  Google Scholar 

  17. M.S. Ma, Z.F. Liu, F.Q. Zhang, F. Liu, Y.X. Li, Suppression of Silver Diffusion in Borosilicate Glass-Based Low-Temperature Cofired Ceramics by Copper Oxide Addition. J. Am. Ceram. Soc. 99(7), 2402–2407 (2016)

    Article  CAS  Google Scholar 

  18. K.C. Feng, M.W. Chu, C.H. Ku, P.Y. Chen, C.S. Tu, C.S. Chen, R.R. Chien, Y. Iizuka, Ag-diffusion inhibition mechanism in SiO2-added glass-ceramics for 5G antenna applications. Ceram. Int. 46(15), 24083–24090 (2020)

    Article  CAS  Google Scholar 

  19. S. Kemethmuller, M. Hagymasi, A. Stiegelschmitt, A. Roosen, Viscous flow as the driving force for the densification of low-temperature co-fired ceramics. J. Am. Ceram. Soc. 90(1), 64–70 (2007)

    Article  Google Scholar 

  20. X. Lu, H. Lin, Investigation on low-temperature reactive viscous flow sintering behavior of lanthanum-borate glass-ceramic with BaTi4O9 ceramic filler. J. Eur. Ceram. Soc. 40(12), 4035–4046 (2020)

    Article  CAS  Google Scholar 

  21. J.-H. Jean, C.-R. Chang, Cofiring kinetics and mechanisms of an Ag-metallized ceramic-filled glass electronic package. J. Am. Ceram. Soc. 80(12), 3084–3092 (2005)

    Article  Google Scholar 

  22. Z.R. Liu, D.D.L. Chung, Comparative study of electrically conductive thick films with and without glass. J. Electron. Mater. 33(3), 194–202 (2004)

    Article  Google Scholar 

  23. M.I. Ojovan, Viscosity and Glass Transition in Amorphous Oxides. Adv. Condens. Matter Phys. 2008(1687–8108), 1–24 (2008)

    Article  Google Scholar 

  24. M.I. Ojovan, K.P. Travis, R.J. Hand, Thermodynamic parameters of bonds in glassy materials from viscosity - temperature relationships. J. Phys. Condens. Matter. 19, 41 (2007)

    Article  Google Scholar 

  25. Q.J. Zheng, J.C. Mauro, Viscosity of glass-forming systems. J. Am. Ceram. Soc. 100(1), 6–25 (2017)

    Article  CAS  Google Scholar 

  26. T.N. Yan, W.J. Zhang, H.J. Mao, X.Y. Chen, S.X. Bai, The effect of CaO/SiO2 and B2O3 on the sintering contraction behaviors of CaO-B2O3-SiO2 glass-ceramics. Int. J. Mod. Phys. B 33(9), 1950070 (2019)

    Article  CAS  Google Scholar 

  27. P.F. Wei, H.Q. Zhou, H.K. Zhu, B. Dai, J. Wang, Microstructure and microwave dielectric properties of CaO-B2O3-SiO2 glass ceramics with various B2O3 contents. J. Cent. South. Univ. 18(5), 1359–1364 (2011)

    Article  CAS  Google Scholar 

  28. H. Doweidar, Y.B. Saddeek, Effect of La2O3 on the structure of lead borate glasses. J. Non Cryst. Solids 356(28–30), 1452–1457 (2010)

    Article  CAS  Google Scholar 

  29. J. Wan, J. Cheng, P. Lu, The coordination state of B and Al of borosilicate glass by IR spectra. J. Wuhan Univ. Technol. Mater. Sci. Ed. 23(3), 419–421 (2008)

    Article  CAS  Google Scholar 

  30. X. Zhu, C. Mai, M. Li, Effects of B2O3 content variation on the Bi ions in Bi2O3–B2O3–SiO2 glass structure. J. Non Cryst. Solids 388, 55–61 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2018JJ3602).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Zhuofeng Liu, Wenxue Liang, Weijun Zhang, Fenglin Wang, Yan Xun, Tongting Chen, Wei Li, Xingyu Chen, and Haijun Mao. The first draft of the manuscript was written by Zhuofeng Liu and Wenxue Liang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhuofeng Liu or Weijun Zhang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liang, W., Zhang, W. et al. Effects of Pb–B–Si–O glass on the microstructures and electrical properties of silver electrode for LTCC application. J Mater Sci: Mater Electron 33, 17814–17827 (2022). https://doi.org/10.1007/s10854-022-08646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08646-3

Navigation