Skip to main content
Log in

Ultra-low sintering temperature ceramics for LTCC applications: a review

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

During past over 30 years, low temperature co-fired ceramic (LTCC) technology has been developed to meet with the requirements of small, light weight and multifunctional electronic components through enabling fabrication of three-dimensional ceramic modules with low dielectric loss and embedded silver electrode. A recent technology is to develop new dielectrics with ultra-low sintering temperature (usually <650 °C) to save energy, reduce processing time, and to enable further integrations with semiconductors, metals or even plastics. In this review, we summarized the materials with ultra-low sintering temperature developed in past over 10 years, which will be helpful for those researchers to not only develop new materials but also improve all technologies in ultra-LTCC fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Imanaka, Multilayered Low Temperature Co-Fired Ceramics (LTCC) Technology (Springer, New York, 2005)

    Google Scholar 

  2. C. Jin, S. Lin, J.T. Wetzel, J. Electron. Mater. 30(4), 284 (2001)

    Article  Google Scholar 

  3. S. Nishigaki, U. Goebel, W. Roethlingshoefer, LTCC (LFC) Material Systems and Its Application in Automotive ECU’s, in Proceedings 2004 IMAPS Conference on ceramic Interconnect Technology (Denver, CO, 2004), pp. 231–237

  4. R.R. Tummala, J. Am. Ceram. Soc. 74(5), 895 (1991)

    Article  Google Scholar 

  5. S. Rajesh, H. Jantunen, M. Letz, S.P. Willhelm, Int. J. Appl. Ceram. Technol. 9(1), 52 (2012)

    Article  Google Scholar 

  6. M.T. Sebastian, H. Jantunen, Inter. Mater. Rev. 53, 57 (2008)

    Article  Google Scholar 

  7. B. Schwartz, Am. Ceram. Soc. Bull. 63, 577 (1984)

    Google Scholar 

  8. V.L. Gurevich, A.K. Tagantsev, Adv. Phys. 40, 719 (1991)

    Article  Google Scholar 

  9. P.L. Wise, I.M. Reaney, W.E. Lee, T.J. Price, D.M. Iddles, D.S. Cannell, J. Eur. Ceram. Soc. 21, 1723 (2001)

    Article  Google Scholar 

  10. I.M. Reaney, D. Iddles, J. Am. Ceram. Soc. 89, 2063 (2006)

    Google Scholar 

  11. M.T. Sebastian, Dielectric Materials for Wireless Communication, 1st edn. (Elsevier, Oxford, 2008), pp. 445–465

    Book  Google Scholar 

  12. I. Levin, T.G. Amos, J.C. Nino, T.A. Vanderah, I.M. Reaney, C.A. Randall, M.T. Lanagan, J. Mater. Res. 17, 1406 (2002)

    Article  Google Scholar 

  13. M. Valant, P.K. Davies, J. Am. Ceram. Soc. 83, 147 (2000)

    Article  Google Scholar 

  14. H.J. Youn, T. Sogabe, C.A. Randall, T.R. Shrout, M.T. Lanagan, J. Am. Ceram. Soc. 84, 2557 (2001)

    Article  Google Scholar 

  15. H.B. Hong, D.W. Kim, K.S. Hong, Jpn. J. Appl. Phys. 42, 5172 (2003)

    Article  Google Scholar 

  16. H. Wang, H. Du, Z. Peng, M. Zhang, X. Yao, Ceram. Int. 30, 1225 (2004)

    Article  Google Scholar 

  17. B. Shen, X. Yao, L. Kang, D. Peng, Ceram. Int. 30, 1219 (2004)

    Article  Google Scholar 

  18. M. Udovic, M. Valant, D. Suvorov, J. Euro. Ceram. Soc. 21, 1735 (2001)

    Article  Google Scholar 

  19. S. Yamanaka, M. Miyake, J. Less-Common Metal 159, 179 (1990)

    Article  Google Scholar 

  20. J. Guo, D. Zhou, H. Wang, Y.H. Chen, Y. Zeng, F. Xiang, Y. Wu, X. Yao, J. Am. Ceram. Soc. 95, 232 (2012)

    Article  Google Scholar 

  21. D.K. Kwon, M.T. Lanagan, T.T. Shrout, J. Ceram. Soc. Jpn. 113, 216 (2005)

    Article  Google Scholar 

  22. M. Udovic, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 87(4), 591 (2004)

    Article  Google Scholar 

  23. D.K. Kwon, M.T. Lanagan, T.R. Shrout, Mater. Lett. 61, 1827 (2007)

    Article  Google Scholar 

  24. G. Subodh, M.T. Sebastian, J. Am. Ceram. Soc. 90(7), 2266 (2007)

    Article  Google Scholar 

  25. D.K. Kwon, M.T. Lanagan, T.R. Shrout, J. Am. Ceram. Soc. 88, 3419 (2005)

    Article  Google Scholar 

  26. P.J. Harrop, J. Mater. Sci. 4, 370 (1969)

    Article  Google Scholar 

  27. D. Zhou, H. Wang, L.X. Pang, C.A. Randall, X. Yao, J. Am. Ceram. Soc. 92(10), 2242 (2009)

    Article  Google Scholar 

  28. D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, J. Am. Ceram. Soc. 93(4), 1096 (2010)

    Article  Google Scholar 

  29. G.Q. Zhang, J. Guo, L. He, D. Zhou, H. Wang, J. Koruza, M. Kosec, J. Am. Ceram. Soc. 97(1), 241 (2014)

    Article  Google Scholar 

  30. R. Kohlmuller, J.P. Badaud, Bull. Soc. Chim. Fr. 10, 3434 (1969)

    Google Scholar 

  31. M. Egashira, K. Matsuo, S. Kagawa, T. Seiyama, J. Catal. 58, 409 (1979)

    Article  Google Scholar 

  32. T. Chen, G.S. Smith, J. Solid State Chem. 13, 288 (1975)

    Article  Google Scholar 

  33. H.Y. Chen, A.W. Sleight, J. Solid State Chem. 63, 70 (1986)

    Article  Google Scholar 

  34. D. Zhou, H. Wang, X. Yao, L.X. Pang, J. Am. Ceram. Soc. 91(10), 3419 (2008)

    Article  Google Scholar 

  35. D. Zhou, C.A. Randall, A. Baker, H. Wang, L.X. Pang, X. Yao, J. Am. Ceram. Soc. 93(5), 1443 (2010)

    Google Scholar 

  36. A. Feteira, D.C. Sinclair, J. Am. Ceram. Soc. 91(4), 1338 (2008)

    Article  Google Scholar 

  37. A. Watanabe, M. Goto, J. Less-Common Metals 61, 265 (1978)

    Article  Google Scholar 

  38. D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, X.G. Wu, L. Shui, X. Yao, J. Am. Ceram. Soc. 94(2), 348 (2011)

    Article  Google Scholar 

  39. H.T. Sawhill, R.H. Jensen, K.R. Mikeska, Ceram. Trans. 15(61), 1 (1989)

    Google Scholar 

  40. S. Knickerbocker, H.A. Kumar, L.W. Herron, Am. Ceram. Soc. Bull. 72(1), 90 (1996)

    Google Scholar 

  41. Y. Imanaka, K. Yamazaki, S. Aoki, N. Kamehara, K. Niwa, J. Ceram. Soc. Jpn. 97, 309 (1989)

    Article  Google Scholar 

  42. J.H. Jean, T.K. Gupta, J. Mater. Res. 9, 771 (1994)

    Article  Google Scholar 

  43. J.H. Jean, T.K. Gupta, J. Mater. Res. 9, 486 (1994)

    Article  Google Scholar 

  44. J.H. Jean, S.-C. Lin, J. Mater. Res. 14, 1359 (1999)

    Article  Google Scholar 

  45. S. Dai, R.F. Huang, D.L. Wilcos, J. Am. Ceram. Soc. 85, 828 (2002)

    Article  Google Scholar 

  46. Y. Imanaka, S. Aoki, N. Kamehara, K. Niwa, J. Ceram. Soc. Jpn. 95, 1119 (1987)

    Google Scholar 

  47. S. Rajesh, H. Jantunen, M. Letz, S.P. Willhelm, Int. J. Appl. Ceram. Tech. 9(1), 52 (2012)

    Article  Google Scholar 

  48. K. Jui, H.T. Yu, L. Ye, G.L. Xu, J. Am. Ceram. Soc. 96(11), 3563 (2013)

    Article  Google Scholar 

  49. J.O. Israd, in Proceedings of the International Conference on ‘Computer Materials on Electronic Packing in Engineering’, 1961, IEEE, 3636

  50. K. Wakino, in Proceedings of the ISIF, 1992, ed. by A. R. von Hipple. Dielectric materials and applications (MIT Press, Cambridge, 1954), pp. 308–335

  51. G.P. Kothiyal, A. Ananthanarayanan, G.K. Dey, 9th Chapter, Fun. Mater. (Elsevier, Holland, 2012)

  52. S. Knickerbocker, A.H. Kumar, L.W. Herron, Am. Ceram. Soc. Bull. 72, 90 (1993)

    Google Scholar 

  53. Ferro Corporation, in ‘FERRO-TAPE-A6’, Technical publication (Ferro Corporation, Santa Barbara, 1996)

  54. X.G. Wu, H. Wang, Y.H. Chen, D. Zhou, J. Am. Ceram. Soc. 95, 1793 (2012)

    Article  Google Scholar 

  55. H.T. Yu, K. Ju, K.M. Wang, J. Am. Ceram. Soc. 97, 704 (2014)

    Article  Google Scholar 

  56. J.M. Wu, H.L. Huang, J. Non-Cryst. Sol. 260, 116 (1999)

    Article  Google Scholar 

  57. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993)

    Article  Google Scholar 

  58. H.T. Kim, J. Am. Ceram. Soc. 82, 3476 (1999)

    Article  Google Scholar 

  59. J. Honkamo, H. Jantunen, G. Subodh, M.T. Sebastian, P. Mohanan, Int. J. Appl. Ceram. Technol. 6(4), 530 (2009)

    Article  Google Scholar 

  60. H.T. Yu, K. Jui, J.S. Liu, Y.Z. Li, J. Mater. Sci. Mater. Electro. 25, 5114 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This review is one of invited paper for the special issue of JMSE Electronic Materials for Harsh Environments. All authors acknowledge those scientists who contributed to LTCC technology to save power energy. Acknowledgements are given also to the State Key Laboratory of Electronic Thin films and Integrated Devices of China for the project support (KFJJ201207).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingsong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Liu, J., Zhang, W. et al. Ultra-low sintering temperature ceramics for LTCC applications: a review. J Mater Sci: Mater Electron 26, 9414–9423 (2015). https://doi.org/10.1007/s10854-015-3282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3282-y

Keywords

Navigation