Skip to main content
Log in

Thermoresistive and thermoelectric properties of coplanar cellulose-MWCNTs buckypaper

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermoresistive sensors are based on the change in electrical resistance with temperature variation, are easily read, and have a simple design but require external power for their operation. Thermoelectric devices (TDs) based on the Seebeck effect directly convert heat into electrical power without any moving parts, generating voltages from the temperature difference established between the ends of a solid-state material. In recent years, several thermoresistors and TDs have been manufactured with conductive films based on carbon nanotubes (CNTs), i.e., with buckypaper (BP), because they provide lightweight, flexible, and sensitive devices. Nevertheless, the electrical resistance and thermoelectric properties of CNTs are affected when they are randomly assembled to form a BP. Then, this study investigated the thermoresistive and thermoelectric properties of a coplanar BP with an active area of 1.0 cm2. Morphological characterization was performed by scanning electron microscopy and showed bundles of multiwalled CNTs agglomerated on the surface but also impregnated into cellulose fibers. BP-based thermoresistive sensor had a maximum sensitivity of − 10.05% at 322 K. Moreover, the thermoelectric configuration presented a maximum thermovoltage and thermoelectric power of − 1.2 mV and − 0.09 mV/K, respectively. These results suggest that this coplanar BP can be easily applied in thermal sensors and thermoelectric device concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Any data and information used to support the findings of this study will be provided upon request to the corresponding author.

Code availability

Not applicable.

References

  1. J. Yang, D. Wei, L. Tang, X. Song, W. Luo, J. Chu, T. Gao, H. Shi, C. Du, RSC Adv. 5(32), 25609 (2015). https://doi.org/10.1039/C5RA00871A

    Article  CAS  Google Scholar 

  2. D. Ross-Pinnock, P.G. Maropoulos, Proc. Inst. Mech. Eng. B 230(5), 793 (2016). https://doi.org/10.1177/0954405414567929

    Article  Google Scholar 

  3. T. Adiono, M.Y. Fathany, S. Fuada, I.G. Purwanda, S.F. Anindya, 3rd Int. Conf. Intell. Green Build. Smart Grid (2018). https://doi.org/10.1109/IGBSG.2018.8393575

    Article  Google Scholar 

  4. C. Goumopoulos, Sensors 18, 3445 (2018). https://doi.org/10.3390/s18103445

    Article  Google Scholar 

  5. B.F. Monea, E.I. Ionete, S.I. Spiridon, D. Ion-Ebrasu, E. Petre, Sensors 19(10), 2464 (2019). https://doi.org/10.3390/s19112464

    Article  CAS  Google Scholar 

  6. J. Fraden, Handbook of modern sensors, 5th edn. (Springer, Cham, 2016), pp. 585–635

    Google Scholar 

  7. J.L. Blackburn, A.J. Ferguson, C. Cho, J.C. Grunlan, Adv. Mater. 30(11), 1704386 (2018). https://doi.org/10.1002/adma.201704386

    Article  CAS  Google Scholar 

  8. Y. Zhang, Y.-J. Heo, M. Park, S.-J. Park, Polymers 11(1), 167 (2019). https://doi.org/10.3390/polym11010167

    Article  CAS  Google Scholar 

  9. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  10. P.T. Araujo, N.M. Barbosa Neto, M.E.S. Sousa, R.S. Angélica, S. Simões, M.F.G. Vieira, M.S. Dresselhaus, M.A.L. Reis, Carbon 124, 348 (2017). https://doi.org/10.1016/j.carbon.2017.08.041

    Article  CAS  Google Scholar 

  11. S. Sarma, J.H. Lee, Sensors 18(10), 3182 (2018). https://doi.org/10.3390/s18103182

    Article  CAS  Google Scholar 

  12. S. Lu, D. Chen, X. Wang, X. Xiong, K. Ma, L. Zhang, Q. Meng, Polym. Test 57, 12 (2017). https://doi.org/10.1016/j.polymertesting.2016.11.008

    Article  CAS  Google Scholar 

  13. J. Huang, X. Yang, S.-C. Her, Y.-M. Liang, Sensors 19(2), 317 (2019). https://doi.org/10.3390/s19020317

    Article  CAS  Google Scholar 

  14. P. Verma, A. Schiffer, S. Kumar, Polym. Test 93, 106961 (2021). https://doi.org/10.1016/j.polymertesting.2020.106961

    Article  CAS  Google Scholar 

  15. M.A. Zoui, S. Bentouba, J.G. Stocholm, M. Bourouis, Energies 13(14), 3606 (2020). https://doi.org/10.3390/en13143606

    Article  CAS  Google Scholar 

  16. S. Mukherjee, S. Assali, O. Moutanabbir, in Nanowires for energy applications. ed. by S. Mokkapati, C. Jagadish (Academic Press, Cambridge, 2018), p. 156

    Google Scholar 

  17. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87(21), 215502 (2001). https://doi.org/10.1103/PhysRevLett.87.215502

    Article  CAS  Google Scholar 

  18. H.-L. Zhang, J.-F. Li, B.-P. Zhang, K.-F. Yao, W.-S. Liu, H. Wang, Phys. Rev. B 75(20), 205407 (2007). https://doi.org/10.1103/PhysRevB.75.205407

    Article  CAS  Google Scholar 

  19. K. Bradley, S.H. Jhi, P.G. Collins, J. Hone, M.L. Cohen, S.G. Louie, A. Zettl, Phys. Rev. Lett. 85(20), 4361 (2000). https://doi.org/10.1103/PhysRevLett.85.4361

    Article  CAS  Google Scholar 

  20. B. Sadanadan, T. Savage, S. Bhattacharya, T. Tritt, A. Cassell, M. Meyyappan, Z.R. Dai, Z.L. Wang, R. Zidan, A.M. Rao, J. Nanosci. Nanotechnol. 3(1–2), 99 (2003). https://doi.org/10.1166/jnn.2003.186

    Article  CAS  Google Scholar 

  21. E. Vieira, J. Figueira, A.L. Pires, J. Grilo, M.F. Silva, A.M. Pereira, L.M. Goncalves, Proceedings 2(13), 815 (2018). https://doi.org/10.3390/proceedings2130815

    Article  Google Scholar 

  22. P. Mele, S. Saini, E. Magnone, in Thermoelectric thin films. ed. by B.P. Mele, D. Narducci, M. Ohta, K. Biswas, J. Morante, S. Saini, T. Endo (Springer, Cham, 2019), p. 141

    Chapter  Google Scholar 

  23. C. Cho, K.L. Wallace, P. Tzeng, J.-H. Hsu, C. Yu, J.C. Grunlan, Adv. Energy Mater. 6(7), 1502168 (2016). https://doi.org/10.1002/aenm.201502168

    Article  CAS  Google Scholar 

  24. M.M. Ismail, A.M. Hussein, Appl. Nanosci. 7, 201 (2017). https://doi.org/10.1007/s13204-017-0560-4

    Article  CAS  Google Scholar 

  25. D. Abol-Fotouh, B. Dörling, O. Zapata-Arteaga, X. Rodríguez-Martínez, A. Gómez, J.S. Reparaz, A. Laromaine, A. Roig, M. Campoy-Quiles, Energy Environ. Sci. 12(2), 716 (2019). https://doi.org/10.1039/C8EE03112F

    Article  CAS  Google Scholar 

  26. P.F.P. Pinheiro, L.M.P. Ferreira, F.A.S. Rodrigues, J.C.S. Oliveira, A.F.R. Rodriguez, M.E.S. Sousa, M.A.L. Reis, J. Nanotechnol. (2019). https://doi.org/10.1155/2019/8385091

    Article  Google Scholar 

  27. L.R. Shobin, S. Manivannan, Sens. Actuators B Chem. 220, 1178 (2015). https://doi.org/10.1016/j.snb.2015.06.030

    Article  CAS  Google Scholar 

  28. S.P. Patole, M.F. Arif, R.A. Susantyoko, S. Almheiri, S. Kumar, Sci. Rep. 8, 12188 (2018). https://doi.org/10.1038/s41598-018-30009-4

    Article  CAS  Google Scholar 

  29. F. Herziger, C. Tyborski, O. Ochedowski, M. Schleberger, J. Maultzsch, Phys. Rev. B 90(24), 245431 (2014). https://doi.org/10.1103/PhysRevB.90.245431

    Article  CAS  Google Scholar 

  30. S.L.H. Rebelo, A. Guedes, M.E. Szefcyk, A.M. Pereira, J.P. Araújo, C. Freire, Phys. Chem. Chem. Phys. 18(18), 12784 (2016). https://doi.org/10.1039/C5CP06519D

    Article  CAS  Google Scholar 

  31. M.A.L. Reis, N.M. Barbosa Neto, M.E.S. Sousa, P.T. Araujo, S. Simões, M.F. Vieira, F. Viana, C.R.L. Loayza, D.J.A. Borges, D.C.S. Cardoso, P.D.C. Assunção, E.M. Braga, AIP Adv. 8(1), 015323 (2018). https://doi.org/10.1063/1.5018745

    Article  CAS  Google Scholar 

  32. H.H. Liu, S.H. Lin, N.T. Yu, Biophys. J. 57(4), 851 (1990). https://doi.org/10.1016/S0006-3495(90)82604-7

    Article  CAS  Google Scholar 

  33. D. Xiao, W. Sun, H. Dai, Y. Zhang, X. Qin, L. Li, Z. Wei, X. Chen, J. Phys. Chem. C 118(35), 20694 (2014). https://doi.org/10.1021/jp506336c

    Article  CAS  Google Scholar 

  34. A.C. Oliveira, M.A.L. Reis, F.F. de Sousa, M.E.S. Sousa, Chem. Phys. 530, 110591 (2020). https://doi.org/10.1016/j.chemphys.2019.110591

    Article  CAS  Google Scholar 

  35. P.R.O. Brito, C.R.L. Loayza, S.P.A. da Paz, M.A.L. Reis, M.E.S. Sousa, E.M. Braga, R.S. Angélica, Met. Mater. Int. (2021). https://doi.org/10.1007/s12540-020-00914-3

    Article  Google Scholar 

  36. S.A. Solin, N. Caswell, J. Raman Spectrosc. 10(1), 129 (1981). https://doi.org/10.1002/jrs.1250100124

    Article  CAS  Google Scholar 

  37. S.D.M. Brown, A. Jorio, P. Corio, M.S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp, Phys. Rev. B 63(15), 155414 (2001). https://doi.org/10.1103/PhysRevB.63.155414

    Article  CAS  Google Scholar 

  38. A. Di Bartolomeo, M. Sarno, F. Giubileo, C. Altavilla, L. Iemmo, S. Piano, F. Bobba, M. Longobardi, A. Scarfato, D. Sannino, A.M. Cucolo, P. Ciambelli, J. Appl. Phys. 105(6), 064518 (2009). https://doi.org/10.1063/1.3093680

    Article  CAS  Google Scholar 

  39. F. Giubileo, L. Iemmo, G. Luongo, N. Martucciello, M. Raimondo, L. Guadagno, M. Passacantando, K. Lafdi, A. Di Bartolomeo, J. Mater. Sci. 52, 6459 (2017). https://doi.org/10.1007/s10853-017-0881-4

    Article  CAS  Google Scholar 

  40. B.T. Chia, D.-R. Chang, H.-H. Liao, Y.-J. Yang, W.-P. Shih, F.-Y. Chang, K.-C. Fan, IEEE 20th Int. Conf. Micro Electro Mech. Syst. (2007). https://doi.org/10.1109/MEMSYS.2007.4432989

    Article  Google Scholar 

  41. G. Lucazeau, J. Raman Spectrosc. 34(7–8), 478 (2003). https://doi.org/10.1002/jrs.1027

    Article  CAS  Google Scholar 

  42. I. Calizo, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Nano Lett. 7(9), 2645 (2007). https://doi.org/10.1021/nl071033g

    Article  CAS  Google Scholar 

  43. S. Dehghani, M.K. Moravvej-Farshi, M.H. Sheikhi, Mod. Phys. Lett. B 26(21), 1250136 (2012). https://doi.org/10.1142/S0217984912501369

    Article  CAS  Google Scholar 

  44. B. Krause, C. Barbier, J. Levente, M. Klaus, P. Pötschke, J. Compos. Sci. 3(4), 106 (2019). https://doi.org/10.3390/jcs3040106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Luiza de Marilac Pantoja Ferreira and Mário Edson Santos de Sousa thank the Coordination for the Improvement of Higher Education Personnel and the Ministry of Regional Development, respectively, for their individual financial support. The authors thank the Laboratory of Nanoscience and Nanotechnology of the Amazon (LABNANO-AMAZON) at the Federal University of Pará for supporting the facilities used in this work. Soli Deo Gloria.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

PFPP: Conceptualization, methodology, investigation, interpretation and discussion of results, writing—original draft. LdMPF: Methodology, investigation, interpretation of results, writing—original draft. FAdSR: Methodology, interpretation of results, writing—original draft. JCdSO: Methodology, writing—original draft. AFRR: Methodology, writing—original draft. MESdS: Methodology, investigation, interpretation and discussion of results, Writing—review and editing. MALdR: Conceptualization, methodology, investigation, interpretation and discussion of results, writing—review and editing.

Corresponding author

Correspondence to Mário Edson Santos de Sousa.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, P.F.P., Ferreira, L.d.P., Rodrigues, F.A.d. et al. Thermoresistive and thermoelectric properties of coplanar cellulose-MWCNTs buckypaper. J Mater Sci: Mater Electron 33, 17802–17813 (2022). https://doi.org/10.1007/s10854-022-08645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08645-4

Navigation