Skip to main content
Log in

Nonlinear conductivity characteristics of epoxy resin-impregnated nano-SiC-modified insulating paper

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Epoxy resin-impregnated insulating paper (RIP) is the main insulation of the high-voltage direct-current (HVDC) dry bushing. In order to solve the problem of uneven radial electric field distribution of the bushing, the insulating paper was modified by nano-SiC with filling concentrations of 0-7wt% and impregnated with pure epoxy resin. The dispersibility of nanoparticles was observed by scanning electron microscope. Their conductivity, dielectric, and breakdown properties were tested. The results showed that the electrical conductivity of RIP could be improved by filling it with nano-SiC, and nano-SiC/RIP had obvious nonlinear conductivity characteristics. Comsol-Multiphysics was used to simulate the electric field of the HVDC dry bushing with 0-7wt% nano-SiC/RIP as the main insulation. The simulation results showed that the radial electric field uniformity decreased from 3.04 to 1.20 when concentrations increased from 0 wt% to 7 wt%. Finally, considering the comprehensive factor, 5wt% was considered the optimal doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. J. Zheng, M. Wen, Y. Chen, X. Shao, A novel differential protection scheme for HVDC transmission lines. Int. J. Electr. Power Energy Syst. 94, 171–178 (2018)

    Article  Google Scholar 

  2. D. Wang, M. Hou, M. Gao, F. Qiao, Travelling wave directional pilot protection for hybrid HVDC transmission line. Int. J. Electr. Power Energy Syst. 107, 615–627 (2019)

    Article  Google Scholar 

  3. A Kumar, S Jhampati, R Suri (2017) HVDC converter stations design for LCC based HVDC transmission system-key consideration. IEEE India Council International Conference. pp. 1–6

  4. N. Pathak, Z. Hu, Optimal power transmission in multi-terminal HVDC systems for large offshore wind farms: a matheuristic approach. IET Renew. Power Gener. 14(12), 2245–2254 (2020)

    Article  Google Scholar 

  5. CIGRE WG A2.43 (2019) Transformer bushing reliability.Brochure No.755

  6. J. Buchacz, A. Cichoń, J. Skubis, Detection of conductive layers short circuit in HV condenser bushings using frequency domain spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 24(1), 552–558 (2017)

    Article  Google Scholar 

  7. D. Wang, L. Zhou, H. Li et al., Moisture estimation for oil-immersed bushing based on FDS method: at a reference temperature. IET Gener. Transm. Distrib. 12(10), 2480–2486 (2018)

    Article  Google Scholar 

  8. Q. Wang, H. Wang, Z. Peng et al., 3-D coupled electromagnetic-fluid-thermal analysis of epoxy impregnated paper converter transformer bushings. IEEE Trans. Dielectr. Electr. Insul. 24(1), 630–638 (2017)

    Article  Google Scholar 

  9. Q. Wang, Z. Peng, S. Dodd et al., Dielectric response and space charge in epoxy impregnated paper composite laminates. IEEE Trans. Dielectr. Electr. Insul. 26(5), 1532–1540 (2019)

    Article  CAS  Google Scholar 

  10. M. Chen, X. Liu, Z. Wu et al., Novel heat pipe current-carrying tube of RIP valve-side bushing in converter transformer. Electr. Power Syst. Res. 184, 106344 (2020)

    Article  Google Scholar 

  11. K. Roy, M. Alam, S. Mandal et al., Effect of sol–gel modified nano calcium carbonate (CaCO3) on the cure, mechanical and thermal properties of acrylonitrile butadiene rubber (NBR) nanocomposites. J. Sol-Gel Sci. Technol. 73(2), 306–313 (2015)

    Article  CAS  Google Scholar 

  12. G. Patil, A. Patil, S. Jadhav et al., A new method to prepare superhydrophobic cotton fabrics by post-coating surface modification of ZnO nanoparticles. Mater. Lett. 255, 126562 (2019)

    Article  Google Scholar 

  13. J. Xavier, Electrochemical, mechanical and adhesive properties of surface modified NiO-epoxy nanocomposite coatings on mild steel. Mater. Sci. Eng. B. 260, 114639 (2020)

    Article  CAS  Google Scholar 

  14. T.J. Lewis, Nanometric dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1(5), 812–825 (1994)

    Article  CAS  Google Scholar 

  15. Y. Li, X. Huang, Z. Hu et al., Large dielectric constant and high thermal conductivity in poly (vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl. Mater. Interfaces 3(11), 4396–4403 (2011)

    Article  CAS  Google Scholar 

  16. A. Krivda, T. Tanaka, M. Frechette et al., Characterization of epoxy microcomposite and nanocomposite materials for power engineering applications. IEEE Electr. Insul. Mag. 28(2), 38–51 (2012)

    Article  Google Scholar 

  17. A. Ma, W. Chen, Y. Hou et al., The preparation and cure kinetics researches of thermal conductivity epoxy/AlN composites. Polym.-Plast. Technol. Eng. 49(4), 354–358 (2010)

    Article  CAS  Google Scholar 

  18. Y. Yao, X. Zeng, K. Guo et al., The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos. A: Appl. Sci. 69, 49–55 (2015)

    Article  CAS  Google Scholar 

  19. I.A. Tsekmes, P.H.F. Morshuis, J.J. Smit et al., Enhancing the thermal and electrical performance of epoxy microcomposites with the addition of nanofillers. IEEE Electr. Insul. Mag. 31(3), 32–42 (2015)

    Article  Google Scholar 

  20. J. Katayama, Y. Ohki, N. Fuse et al., Effects of nanofiller materials on the dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 20(1), 157–165 (2013)

    Article  CAS  Google Scholar 

  21. I. A. Tsekmes, R. Kochetov, P. H. F. Morshuis and J. J. Smit (2015) Impact of particle distribution on the electrical conductivity of epoxy nanocomposites. IEEE Electrical Insulation Conference (EIC), Seattle, WA 337–340

  22. K. Tavernier, B.R. Varlow, D.W. Auckland et al., Improvement in electrical insulators by nonlinear fillers. IEE Proc. Sci. Meas. Technol. 146(2), 88–94 (1999)

    Article  CAS  Google Scholar 

  23. C. Gauthier, E. Reynaud, R. Vassoille et al., Analysis of the non-linear viscoelastic behaviour of silica filled styrene butadiene rubber. Polymer 45(8), 2761–2771 (2004)

    Article  CAS  Google Scholar 

  24. B.G. Shetty, V. Crasta, N.B.R. Kumar et al., Effect of nano fillers on electrical, mechanical, fluorescent and third order non linear optical properties of PVA. Mater. Res. Express. 6(7), 075055 (2019)

    Article  CAS  Google Scholar 

  25. T. Christen, L. Donzel, F. Greuter, Nonlinear resistive electric field grading part 1: Theory and simulation. IEEE Electr. Insul. Mag. 26(6), 47–59 (2010)

    Article  Google Scholar 

  26. J. Wang, S. Yu, S. Luo et al., Investigation of nonlinear I-V behavior of CNTs filled polymer composites. Mater. Sci. Eng. B. 206, 55–60 (2016)

    Article  CAS  Google Scholar 

  27. Q. Chi, Z. Li, T. Zhang et al., Study on nonlinear conductivity of copper-titanate-calcium/liquid silicone rubber composites. IEEE Trans. Dielectr. Electr. Insul. 26(3), 681–688 (2019)

    Article  CAS  Google Scholar 

  28. Z. Li, Z. Yang, Y. Xing et al., Improving the electric field distribution in stress cone of HTS dc cable terminals by nonlinear conductive epoxy/ZnO composites. IEEE Trans. Appl. Supercond. 29(2), 1–5 (2018)

    Google Scholar 

  29. X. Chen, A. Smorgonskiy, J. Li et al., Nonlinear electrical conductivity through the thickness of multidirectional carbon fiber composites. J. Mater. Sci. 54(5), 3893–3903 (2019)

    Article  CAS  Google Scholar 

  30. Q. Chen, H. Yang, X. Wang et al., Dielectric properties of epoxy resin impregnated nano-sio2 modified insulating paper. Polymers 11(3), 393 (2019)

    Article  Google Scholar 

  31. H. Yang, Q. Chen, X. Wang et al., Dielectric and thermal conductivity of epoxy resin impregnated nano-h-BN modified insulating paper. Polymers 11(8), 1359 (2019)

    Article  CAS  Google Scholar 

  32. X. Wang, J.K. Nelson, L.S. Schadler et al., Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 17(6), 1687–1696 (2010)

    Article  CAS  Google Scholar 

  33. Y. Han, S. Li, M. Frechette, D. Min, Nonlinear conductivity of polymer nanocomposites: a study on epoxy Resin/Silicon carbide materials. IEEE Nanatechnol. Mag. 12(2), 23–32 (2018)

    Article  Google Scholar 

  34. C. Wen, S. Wei, W. Kai, Structural design for DC bushing core based on the material life. IEEE Trans. Dielectr. Electr. Insul. 20(1), 281–288 (2013)

    Article  Google Scholar 

  35. Y. Chen, D. Zhang, X. Wu et al., Epoxy/α-alumina nanocomposite with high electrical insulation performance. Prog. Nat. Sci. Mater. Int. 27(5), 574–581 (2017)

    Article  CAS  Google Scholar 

  36. W.M. Guo, Research on non-linear conductive characteristics and mechanisms of polyethylene composites filled with inorganic filler (Harbin University of Science and Technology, Harbin, 2010)

    Google Scholar 

  37. S. Li, D. Min, W. Wang et al., Linking traps to dielectric breakdown through charge dynamics for polymer nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 23(5), 2777–2785 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by QC, ZZ, SC, HY, ZZ, and ZW. The first draft of the manuscript was written by ZZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Song Cheng or Hongda Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhang, Z., Cheng, S. et al. Nonlinear conductivity characteristics of epoxy resin-impregnated nano-SiC-modified insulating paper. J Mater Sci: Mater Electron 33, 17757–17772 (2022). https://doi.org/10.1007/s10854-022-08638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08638-3

Navigation