Skip to main content
Log in

Space charge characteristics of nano-SiO2-modified oil-paper insulation and numerical simulation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano-modification is one of the effective methods to improve insulation characteristic of dielectric materials. In this paper, SiO2-modified oil-impregnated paper (OIP) is prepared to study space charge accumulation and trap level characteristic, and a bipolar charge transport model adding double trap level is established to simulate space charge accumulation. Space charge density and distribution range of SiO2-modified OIP are less than those of pure OIP, and 2.4 wt% and 3.8 wt% SiO2-modified OIP have space charge suppression. Moreover, surface charge decay rate and amplitude of SiO2-modified OIP are less than non-modified OIP, and those of 2.4 wt% SiO2-modified OIP are least. The trap level distribution is calculated according to the ISPD results, indicating that SiO2-modification decreases the shallow trap density, and increases the deep trap density and the trap level. The effect of SiO2-modification on deep trap level is larger than that on the shallow trap. The simulation results indicate that the charge transport model can simulate and explain the mechanism of space charge accumulation in SiO2-modified OIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. CIGRE Joint Working Group A2/B4.28. HVDC converter transformers design review, test procedures, ageing evaluation and reliability in service. Paris: CIGRE (2010)

  2. D. Linhjell, L. Lundgaard, U. Gafvert, Dielectric response of mineral oil impregnated cellulose and the impact of aging. IEEE Trans. Dielectr. Electr. Insul. 14, 156–169 (2007)

    Article  CAS  Google Scholar 

  3. Y. Maeno, N. Hirai, Y. Ohki, T. Tanaka, M. Okashita, T. Maeno, Effects of crosslinking byproducts on space charge formation in crosslinked polyethylene. IEEE Trans. Dielectr. Electr. Insul. 12, 90–97 (2005)

    Article  CAS  Google Scholar 

  4. L.E. Lundgaard, W. Hansen, D. Linhjell, T.J. Painter, Aging of oil-impregnated paper in power transformers. IEEE Trans. Power Deliv. 19, 230–239 (2004)

    Article  CAS  Google Scholar 

  5. Y.X. Zhou, M. Huang, W.J. Chen, F.B. Jin, Space charge behavior of oil-paper insulation thermally aged under different temperatures and moistures. J. Electr. Eng. Technol. 10, 1129–1135 (2015)

    Google Scholar 

  6. M. Hao, Y. Zhou, G. Chen, G. Wilson, P. Jarman, Space charge behaviour in thick oil-impregnated pressboard under HVDC stresses. IEEE Trans. Dielectr. Electr. Insul. 22, 72–80 (2015)

    Article  CAS  Google Scholar 

  7. J. Alison, R. Hill, A model for bipolar charge transport, trapping and recombination in degassed crosslinked polyethene. J. Phys. D 27, 1291–1299 (1999)

    Article  Google Scholar 

  8. F. Baudoin, S. Roy, G. Teyssedre, Bipolar charge transport model with trapping and recombination: an analysis of the current versus applied electric field characteristic in steady state conditions. J. Phys. D 41, 025306 (2008)

    Article  Google Scholar 

  9. R. Zou, J. Hao, R. Liao, Space-interface charge analysis of the multi-layer oil gap and oil impregnated pressboard under the electrical-thermal combined stress. Energies 12, 1099 (2019)

    Article  CAS  Google Scholar 

  10. Q. Zhu, X. Wang, K. Wu, Y. Cheng, Z. Lv, H. Wang, Space charge distribution in oil impregnated papers under temperature gradient. IEEE Trans. Dielectr. Electr. Insul. 22, 142–151 (2015)

    Article  CAS  Google Scholar 

  11. J. Zhang, Q. Chen, M. Chi, W. Sun, M. Cao, Effect of temperature on space charge characteristics of oil-paper insulation and its numerical simulation. IEEE Trans. Dielectr. Electr. Insul. 26, 1334–1342 (2019)

    Article  CAS  Google Scholar 

  12. T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 15, 152–160 (2008)

    Article  CAS  Google Scholar 

  13. B. Shan, Y. Ying, M. Huang, M. Niu, B. Qi, C. Li, Q. Sun, Y. Lv, Effect of TiO2 nanoparticles on DC breakdown performance of transformer oil-impregnated pressboard. IEEE Trans. Dielectr. Electr. Insul. 26, 1998–2004 (2019)

    Article  CAS  Google Scholar 

  14. R. Liao, C. Lv, L. Yang, Y. Zhang, T. Liu, Space charge behavior in oil-impregnated insulation paper reinforced with nano-TiO2. Bioresources 8, 5656–5665 (2013)

    Article  Google Scholar 

  15. P. Sun, W. Sima, X. Jiang, D. Zhang, J. He, Q. Chen, Failure of nano-modified oil impregnated paper under repeated impulse voltage: effects of TiO2 nanoparticles on space charge characteristics. IEEE Trans. Dielectr. Electr. Insul. 25, 2103–2111 (2018)

    Article  CAS  Google Scholar 

  16. J. Zhang, Q. Chen, M. Chi, H. Yang, H. Liu, Space charge and insulation properties of nano-Al2O3 modified oil-impregnated paper used for HVDC convertor transformer. J. Mater. Sci.: Mater. Electron. 32, 3720–3721 (2021)

    CAS  Google Scholar 

  17. F. Gao, M. Xiang, R. Liao, Z. Xu, J. Wang, The experimental investigation on space charge distribution of cellulose insulation paper modified with alumina nanoparticles. 2016 International conference on condition monitoring and diagnosis (CMD), 757–760. (2016)

  18. Y. Li, J. Hao, J. Zhang, W. Hou, C. Liu, R. Liao, Improvement of the space charge suppression and hydrophobicity property of cellulose insulation pressboard by surface sputtering a ZnO/PTFE functional film. Polymers 10, 1610 (2019)

    Article  Google Scholar 

  19. M.K. Ben Salem, A. Hamrita, E. Hannachi, Y. Slimani, M. Ben Salem, F. Ben Azzouz, The study on SiO2 nanoparticles and nanowires added YBCuO: microstructure and normal state electrical properties. Physica C 498, 38–44 (2014)

    Article  CAS  Google Scholar 

  20. M.K. Ben Salema, E. Hannachia, Y. Slimania, A. Hamritaa, M. Zouaouia, L. Bessaisb, SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy. Ceram. Int. 40, 4953–4962 (2014)

    Article  Google Scholar 

  21. Y. Slimania, B. Unalb, E. Hannachic, A. Selmide, M.A. Almessiereaf, M. Nawazg, A. Baykalg, I. Ercana, M. Yildizh, Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019)

    Article  Google Scholar 

  22. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Iqbal, Study on the addition of SiO2 nanowires to BaTiO3: structure, morphology, electrical and dielectric properties. J. Phys. Chem. Solids 156, 110183 (2021)

    Article  CAS  Google Scholar 

  23. M.T. Nazir, B.T. Phung, M. Hoffman, Performance of silicone rubber composites with SiO2 micro/nano-filler under AC corona discharge. IEEE Trans. Dielectr. Electr. Insul. 23, 2804–2815 (2016)

    Article  CAS  Google Scholar 

  24. A. Beroual, U. Khaled, Effect of nanoparticles mixtures on AC breakdown voltage of mineral oil. IEEE Trans. Dielectr. Electr. Insul. 28, 1216–1222 (2021)

    Article  CAS  Google Scholar 

  25. Y. Li, M. Aihara, K. Murata, Y. Tanaka, T. Takada, Space charge measurement in thick dielectric materials by pulsed electroacoustic method. Rev. Sci. Instrum. 66(7), 3909–3916 (1995)

    Article  CAS  Google Scholar 

  26. Z. Li, B. Du, Z. Yang, C. Han, Temperature dependent trap level characteristics of graphene/LDPE nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 25, 137–144 (2018)

    Article  CAS  Google Scholar 

  27. T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12, 669–681 (2005)

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Shandong Province (No. ZR2020ME206 & No. ZR2020QF064).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by JZ, HL, and HY. The data collections were performed by YL and XD. The data analysis was performed by JZ, SL, and TD. The first draft of the manuscript was written by JZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jinfeng Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, H., Yang, H. et al. Space charge characteristics of nano-SiO2-modified oil-paper insulation and numerical simulation. J Mater Sci: Mater Electron 33, 16251–16262 (2022). https://doi.org/10.1007/s10854-022-08518-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08518-w

Navigation