Skip to main content

Advertisement

Log in

Microwave-assisted hydrothermal synthesis and characterization of TiO2 microspheres for efficient dye-sensitized solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Mesoporous TiO2 microspheres (MS) have been synthesized by a microwave-assisted hydrothermal technique. The samples were analyzed by XRD analysis, and it reveals the tetragonal phase of the TiO2 anatase with better crystallinity. The morphological characterization of TiO2 MS was investigated by FESEM and HRTEM. Bright spots observed from SAED analysis helped in determining the crystalline nature of the microspheres. The synthesized products have a surface area and average pore diameter of 89 m2g−1 and 11.28 nm. The power conversion efficiency of TiO2 MS-based device exhibits a higher PCE of 7.40% compared to commercial P25-based (4.48%) device. The enhanced performance of DSSC is due to its strong light-scattering ability and excellent dye loading capacity of TiO2 microspheres. Electrochemical impedance spectral analysis showed that TiO2 microspheres-based device contributes to a higher electron lifetime and increased efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The whole datasets generated during and /or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Gong, K. Sumathy, Q. Qiao, Z. Zhou, Renew. Sustain. Energy Rev. 68, 234 (2017)

    Article  CAS  Google Scholar 

  2. M.A. Al-Alwani, A.B. Mohamad, N.A. Ludin, A.A.H. Kadhum, K. Sopian, Renew. Sustain Energy Rev. 65, 183 (2016)

    Article  CAS  Google Scholar 

  3. N.S. Lewis, Science 315, 798 (2007)

    Article  CAS  Google Scholar 

  4. D. H. Levi, M. A. Green, Y. Hishikawa, E. D. Dunlop, J. Hohl-Ebinger, and A. W. Ho-Baillie, Prog. Photovolt. 26, 3 (2017)

    Google Scholar 

  5. B. O’regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  6. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595 (2010)

    Article  CAS  Google Scholar 

  7. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, M. Hanaya, Chem. Commun. 51, 15894 (2015)

    Article  CAS  Google Scholar 

  8. S.-S. Kim, Y.-C. Nah, Y.-Y. Noh, J. Jo, D.-Y. Kim, Electrochim. Acta 51, 3814 (2006)

    Article  CAS  Google Scholar 

  9. F. Sauvage, D. Chen, P. Comte, F. Huang, L.-P. Heiniger, Y.-B. Cheng, R.A. Caruso, M. Graetzel, ACS Nano 4, 4420 (2010)

    Article  CAS  Google Scholar 

  10. R.S. Sabry, Y.K. Al-Haidarie, M.A. Kudhier, J. Sol-Gel. Sci. Technol. 78, 299 (2016)

    Article  CAS  Google Scholar 

  11. H.G. Pozos, K.T.V. Krishna, M. de la Luz Olvera Amador, Y. Kudriavtsev, A.M. Alvarez, J. Mater. Sci. 29, 15829 (2018)

    CAS  Google Scholar 

  12. G.L. Chiarello, M.V. Dozzi, E. Selli, J. Energy Chem. 26, 250 (2017)

    Article  Google Scholar 

  13. S.S. El-Deen, A.M. Hashem, A.E. Abdel Ghany, S. Indris, H. Ehrenberg, A. Mauger, C.M. Julien, Ionics 24, 2925 (2018)

    Article  CAS  Google Scholar 

  14. J. George, C.C. Gopalakrishnan, P.K. Manikuttan, K. Mukesh, S. Sreenish, Powder Technol. 377, 269 (2021)

    Article  CAS  Google Scholar 

  15. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, Nanoscale 2, 45 (2010)

    Article  CAS  Google Scholar 

  16. R.S. Dubey, K.V. Krishnamurthy, S. Singh, Res. Phys. 14, 102390 (2019)

    Google Scholar 

  17. A.M. Alotaibi, S. Sathasivam, B.A. Williamson, A. Kafizas, C. Sotelo-Vazquez, A. Taylor, D.O. Scanlon, I.P. Parkin, Chem. Mater. 30, 1353 (2018)

    Article  CAS  Google Scholar 

  18. Y.X. Dong, X.L. Wang, E.M. Jin, S.M. Jeong, B. Jin, S.H. Lee, Renew. Energy 135, 1207 (2019)

    Article  CAS  Google Scholar 

  19. K. Sahu, M. Dhonde, V.V.S. Murty, Int. J. Energy Res. 45, 5423 (2021)

    Article  CAS  Google Scholar 

  20. J. Wan, L. Tao, B. Wang, J. Zhang, H. Wang, P.D. Lund, J. Power Sources 438, 227012 (2019)

    Article  CAS  Google Scholar 

  21. S. So, I. Hwang, J. Yoo, S. Mohajernia, M. Mačković, E. Spiecker, G. Cha, A. Mazare, P. Schmuki, Adv. Energy Mater. 8, 1800981 (2018)

    Article  Google Scholar 

  22. J. Yu, J. Fan, K. Lv, Nanoscale 2, 2144 (2010)

    Article  CAS  Google Scholar 

  23. H. Li, Q. Yu, Y. Huang, C. Yu, R. Li, J. Wang, F. Guo, S. Jiao, S. Gao, Y. Zhang, ACS Appl. Mater. Interfaces. 8, 13384 (2016)

    Article  CAS  Google Scholar 

  24. Y. Ding, J. Yao, L. Hu, S. Dai, Sol. Energy 183, 587 (2019)

    Article  CAS  Google Scholar 

  25. B. Ünlü, M. Özacar, Sol. Energy 196, 448 (2020)

    Article  Google Scholar 

  26. L. Tu, H. Pan, H. Xie, A. Yu, M. Xu, Q. Chai, Y. Cui, X. Zhou, Solid State Sci. 14, 616 (2012)

    Article  CAS  Google Scholar 

  27. N. Santhosh, R. Govindaraj, M. Senthil Pandian, P. Ramasamy, S. Mukhopadhyay, J. Porous Mater. 23, 1483 (2016)

    Article  CAS  Google Scholar 

  28. W. Zhang, J. Gu, S. Yao, H. Wang, J. Mater. Sci. 29, 7356 (2018)

    CAS  Google Scholar 

  29. W. Zhang, H. He, Y. Tian, K. Lan, Q. Liu, C. Wang, Y. Liu, A. Elzatahry, R. Che, W. Li, Chem. Sci. 10, 1664 (2019)

    Article  CAS  Google Scholar 

  30. C. Ma, L. Wang, Z. Guo, Y. Lv, W. Chen, H. Ming, P. Ma, J. Wang, Colloids Surf. A 538, 94 (2018)

    Article  CAS  Google Scholar 

  31. S. Sardar, S. Ghosh, H. Remita, P. Kar, B. Liu, C. Bhattacharya, P. Lemmens, S. Kumar Pal, RSC Adv. 6, 33433 (2016)

    Article  CAS  Google Scholar 

  32. R. Krishnapriya, C. Nizamudeen, B. Saini, M.S. Mozumder, R.K. Sharma, A.-H.I. Mourad, Sci Rep 11, 16265 (2021)

    Article  CAS  Google Scholar 

  33. H.-G. Jung, S. Nagarajan, Y.S. Kang, Y.-K. Sun, Electrochim. Acta 89, 848 (2013)

    Article  CAS  Google Scholar 

  34. A.M. Hussein, A.V. Iefanova, R.T. Koodali, B.A. Logue, R.V. Shende, Energy Rep. 4, 56 (2018)

    Article  Google Scholar 

  35. V. Gowthambabu, M. Deshpande, R. Govindaraj, V.K. Nithesh Krishna, M. Leela Charumathi, J. Manish Kumar, D. Vignesh, R. Isaac Daniel, P. Ramasamy, J. Mater. Sci. 32, 26306 (2021)

    CAS  Google Scholar 

  36. T. Zhao, W. Luo, Y. Deng, Y. Luo, P. Xu, Y. Liu, L. Wang, Y. Ren, W. Jiang, Nano Energy 26, 16 (2016)

    Article  CAS  Google Scholar 

  37. Y. Cui, X. He, M. Zhu, X. Li, J. Alloy. Compd. 694, 568 (2017)

    Article  CAS  Google Scholar 

  38. L. Chu, Z. Qin, Q. Zhang, W. Chen, J. Yang, J. Yang, X. Li, Appl. Surf. Sci. 360, 634 (2016)

    Article  CAS  Google Scholar 

  39. Z.-Q. Li, Y.-P. Que, L.-E. Mo, W.-C. Chen, Y. Ding, Y.-M. Ma, L. Jiang, L.-H. Hu, S.-Y. Dai, A.C.S. Appl, Mater. Interfaces 7, 10928 (2015)

    Article  CAS  Google Scholar 

  40. X. He, J. Zhang, Y. Guo, J. Liu, X. Li, RSC Adv. 9, 3056 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Sri Sivasubramaniya Nadar (SSN) Trust.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by BV, RG, and PR. The first draft of the manuscript was written by BV and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to R. Govindaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanth, B., Govindaraj, R. & Ramasamy, P. Microwave-assisted hydrothermal synthesis and characterization of TiO2 microspheres for efficient dye-sensitized solar cells. J Mater Sci: Mater Electron 33, 17660–17667 (2022). https://doi.org/10.1007/s10854-022-08629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08629-4

Navigation