Skip to main content

Advertisement

Log in

Synthesis of anatase TiO2 microspheres and their efficient performance in dye-sensitized solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanomaterials play important role in performance of dye-sensitized solar cells. In this paper, highly phase pure anatase TiO2 microspheres were synthesized using a low-cost hydrothermal route. Initially, X-ray diffraction studies and Raman spectroscopic analysis were carried out, and the formation of tetragonal structure of TiO2 with the anatase phase was confirmed. The UV–Vis DRS studies showed the excellent reflectance and optical band-gap energy of 3.29 eV. The well-interconnected spherical nanoparticles with different sizes were examined by Field Emission Scanning Electron Microscopic analysis. The fabricated dye-sensitized solar cell (DSSC) composed of prepared TiO2 microspheres as photoanode exhibited a higher power conversion efficiency (PCE) (η) of 5.4% as compared to commercial P25 with PCE of 3.6%. The higher Jsc (12.03 mA/cm2) in the fabricated DSSC due to efficient dye loading capacity and high light-scattering property was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Available data are transparent.

References

  1. M.S. Ahmad, A.K. Pandey, N.A. Rahim, Renew. Sust. 77, 89 (2019)

    Article  CAS  Google Scholar 

  2. S. Mozaffaria, M.R. Nateghib, M.B. Zarandi, Renew. Sust. 71, 675 (2017)

    Article  CAS  Google Scholar 

  3. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Science 356, 1376 (2018)

    Article  CAS  Google Scholar 

  4. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawab, M. Hanaya, ChemComm 88, 15894 (2015)

    Google Scholar 

  5. Q. Liu, Y. Jiang, K. Jin, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 65, 272 (2020)

    Article  CAS  Google Scholar 

  6. M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu, Y. Yuan, N. Zarrabi, N. Cheng, M. Ghasemi, P. Chen, M. Lyu, D. He, J.H. Yun, Y. Du, Y. Wang, S. Ding, A. Armin, P. Meredith, G. Liu, H.M. Cheng, L. Wang, Nat. Energy 5, 79 (2020)

    Article  CAS  Google Scholar 

  7. X. Sun, Y. Liu, Q. Tai, B. Chen, T. Peng, N. Huang, S. Xu, T. Peng, X.Z. Zhao, J. Phys. Chem. C 116, 11859 (2012)

    Article  CAS  Google Scholar 

  8. A. Wold, Chem. Mater. 5, 280 (1993)

    Article  CAS  Google Scholar 

  9. H.G. Jung, S.W. Oh, J. Ce, N. Jayaprakash, Y.K. Sun, Electrochem. Commun. 11, 756 (2009)

    Article  CAS  Google Scholar 

  10. B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W.D. Lou, E.S. Aydil, Energy Environ. Sci. 7, 2592 (2014)

    Article  CAS  Google Scholar 

  11. B.S. Richards, Sol. Energy Mater. Sol. Cells 79, 369 (2003)

    Article  CAS  Google Scholar 

  12. B. Karunagaran, P. Uthirakumar, S.J. Chung, S. Velumani, E.-K. Suh, Mater. Charact. 58, 680 (2007)

    Article  CAS  Google Scholar 

  13. M. Kitui, M.M. Mwamburi, F. Gaitho, C.M. Maghanga, Int. J. Thin Fil. Sci. Tec. 4, 17 (2015)

    Google Scholar 

  14. S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Science 297, 2243 (2002)

    Article  CAS  Google Scholar 

  15. B. O’Regan, M. Gratzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  16. Y.-Y. Yu, B.-X. Lei, M.-L. Xie, G.-L. Huang, W. Sun, Z.-F. Sun, Adv Powder Technol 26, 1072 (2015)

    Article  CAS  Google Scholar 

  17. S.S. Kanmani, K. Ramachandran, J. Mater. Sci. 48, 2076 (2013)

    Article  CAS  Google Scholar 

  18. E. Ramasamy, J. Lee, J. Phys. Chem. C 114, 22032 (2010)

    Article  CAS  Google Scholar 

  19. H. Zheng, Y. Tachibana, K.K. Zadeh, Langmuir 26, 19148 (2010)

    Article  CAS  Google Scholar 

  20. J.Z. Ou, R.A. Rani, M.H. Ham, M.R. Field, Y. Zhang, H. Zheng, P. Reece, S. Zhuiykov, S. Sriram, M. Bhaskaran, R.B. Kaner, K.K. Zadeh, ACS Nano 6, 4045 (2012)

    Article  CAS  Google Scholar 

  21. P. Jayabal, V. Sasirekha, J. Mayandi, K. Jeganathan, V. Ramakrishnan, J. Alloys, Compd 586, 456 (2014)

    Article  CAS  Google Scholar 

  22. J. Chen, L. Lu, W. Wang, J. Phys. Chem. C 116, 10841 (2012)

    Article  CAS  Google Scholar 

  23. N. Rajamanickam, P. Soundarrajan, S.M. Senthil Kumar, K. Jayakumar, K. Ramachandran, Electrochim. Acta 296, 771 (2019)

    Article  CAS  Google Scholar 

  24. M.R. Venkatraman, N. Muthukumarasamy, P. Balraju, P. Selvakumar, V. Dhayalan, P. Arivalagan, Int. J. Hydrog. Energy 45, 15441 (2020)

    Article  CAS  Google Scholar 

  25. X. Feng, K. Zhu, A.J. Frank, C.A. Grimes, T.E. Mallouk, Angew. Chem. 124, 2781 (2012)

    Article  Google Scholar 

  26. M.S. Mahmoud, M.S. Akhtar, I.M.A. Mohamed, R. Hamdan, Y.A. Dakka, N.A.M. Barakat, Mater. Lett. 225, 77 (2018)

    Article  CAS  Google Scholar 

  27. X.Y. Ye, Y.H. Gu, H. Chen, Y.F. Cao, Y.Y. Liu, B.X. Lei, W. Sun, Z.F. Sun, Adv. Powder Technol. 30, 2408 (2019)

    Article  CAS  Google Scholar 

  28. Z.Q. Li, Y.P. Que, L.E. Mo, W.C. Chen, Y. Ding, Y. Mei Ma, L. Jiang, L.H. Hu, S.Y. Dai, Appl. Mater. Interfaces 7, 10928 (2015)

    Article  CAS  Google Scholar 

  29. J.D. Peng, C.M. Tseng, R. Vittal, K.C. Ho, Nano Energy 22, 136 (2016)

    Article  CAS  Google Scholar 

  30. P. Ilaiyaraja, T.K. Das, P.S.V. Mocherla, C. Sudakar, Sol. Energy Mater. Sol. Cells 169, 86 (2017)

    Article  CAS  Google Scholar 

  31. H. Tao, W. Chen, J. Wang, W. Ke, J. Wan, J. Wu, G. Fang, Electrochim. Acta 137, 17 (2014)

    Article  CAS  Google Scholar 

  32. X. Miao, K. Pan, Y. Liao, W. Zhou, Q. Pan, G. Tian, G. Wang, J. Mater. Chem 1, 9853 (2013)

    Article  CAS  Google Scholar 

  33. F. Sauvage, D. Chen, P. Comte, F. Huang, L.P. Heiniger, Y.B. Cheng, R.A. Caruso, M. Graetzel, ACS Nano 8, 4420 (2010)

    Article  CAS  Google Scholar 

  34. D. Hwang, H. Lee, S.Y. Jang, S.M. Jo, D. Kim, Y. Seo, D.Y. Kim, Appl. Mater. Interfaces 3, 2719 (2011)

    Article  CAS  Google Scholar 

  35. Y. Zhou, E.Y. Ding, W.D. Li, Mater. Lett. 61, 5050 (2007)

    Article  CAS  Google Scholar 

  36. J. Yu, J. Zhang, Dalton Trans. 25, 5860 (2010)

    Article  CAS  Google Scholar 

  37. G. Zhu, L. Pan, J. Yang, X. Liu, H. Sun, Z. Sun, J. Mater. Chem. 22, 24326 (2012)

    Article  CAS  Google Scholar 

  38. R. Govindaraj, N. Santhosh, M.S. Pandian, P. Ramasamy, Appl. Surf. Sci. 449, 166 (2018)

    Article  CAS  Google Scholar 

  39. S.S. Kanmani, N. Rajkumar, K. Ramachandran, Int. J. Nanosci. 10, 227 (2011)

    Article  CAS  Google Scholar 

  40. M.R. Venkatraman, N. Muthukumarasamy, S. Agilan, V. Asokan, D. Velauthapillai, Mater. Res. Bull. 97, 351 (2018)

    Article  CAS  Google Scholar 

  41. R. Govindaraj, N. Santhosh, M.S. Pandian, P. Ramasamy, M. Sumita, J. Mater. Sci.: Mater. Electron. 29, 3736 (2018)

    CAS  Google Scholar 

  42. X. Tao, P. Ruan, X. Zhang, H. Sun, X. Zhou, Nanoscale 8, 3539 (2015)

    Article  CAS  Google Scholar 

  43. T. Amutha, M. Rameshbabu, S.S. Florence, N. Senthilkumar, I.V. Potheher, K. Prabha, Res. Chem. Intermed. 45, 1929 (2019)

    Article  CAS  Google Scholar 

  44. T.Z. Ren, Z.Y. Yuan, B.L. Su, Chem. Phys. Lett 170, 374 (2003)

    Google Scholar 

  45. C. Ma, L. Wang, Z. Guo, Y. Lv, W. Chen, H. Ming, P. Ma, J. Wang, Colloids Surf. A 538, 94 (2018)

    Article  CAS  Google Scholar 

  46. S.D. Liu, Y.K. Ren, Z. Zhou, W.C. Chen, Z.Q. Li, F.L. Guo, L.-E. Mo, J.H. Wu, L.H. Hu, S.Y. Dai, Adv. Powder Technol. 329, 225 (2019)

    Google Scholar 

  47. N. Rajamanickam, K. Ramachandran, J. Colloid Interface Sci. 580, 407 (2020)

    Article  CAS  Google Scholar 

  48. Z. Ge, C. Wang, Z. Chen, T. Wang, T. Chen, R. Shi, S. Yu, J. Liu, Mater. Res. Bull. 135, 111148 (2021)

    Article  CAS  Google Scholar 

  49. H.G. Jung, S. Nagarajan, Y.S. Kang, Y.K. Sun, Electrochim. Acta 848, 89 (2013)

    Google Scholar 

  50. R.S. Dubey, K.V. Krishnamurthy, S. Singh, Results Phys. 102390, 14 (2019)

    Google Scholar 

  51. Y. Zhang, L. Wang, B. Liu, J. Zhai, H. Fan, D. Wang, Y. Lin, T. Xie, Electrochim. Acta 6517, 56 (2011)

    Google Scholar 

  52. F. Xu, X. Zhang, Y. Wu, D. Wu, Z. Gao, K. Jiang, J. Alloys, Compd 227, 574 (2013)

    Google Scholar 

  53. Z. Zhu, C. Zhu, H. Liu, Y. Wu, G. Chen, T. Lv, Appl. Surf. Sci. 301, 308 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Sathyabama Institute of Science and Technology for providing access to their Raman and FESEM facilities.

Funding

SSN Trust (partially).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Govindaraj.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowthambabu, V., Deshpande, M., Govindaraj, R. et al. Synthesis of anatase TiO2 microspheres and their efficient performance in dye-sensitized solar cell. J Mater Sci: Mater Electron 32, 26306–26317 (2021). https://doi.org/10.1007/s10854-021-06923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06923-1

Navigation