Skip to main content
Log in

Highly flexible and sensitive wearable strain and pressure sensor based on porous graphene paper for human motion

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The demand for high-performance multifunctional wearable devices drives the rapid development of sensors with flexibility, sensitivity and easy preparation. Here, we report an efficient preparation method to fabricate a wearable strain and pressure sensor based on porous graphene paper (PGP), which is prepared by polymethylmethacrylate (PMMA) microsphere as a template. The prepared PGP-based strain and pressure sensor can detect multi-dimensional deformation and shows good flexibility even after more than 1000 s of repeated deformation cycles, while the rapid response time can be up to approximately 60 ms. Moreover, the obtained PGP-based sensor exhibits a good sensitivity that the gauge factor (GF) is up to 77 when the strain is in the range of 4–8%, much higher than other graphene materials. Importantly, the porous microstructure created by the PMMA microsphere in the PGP plays a vital role in the good comprehensive performance of the PGP-based sensor. The device shows potential applications in smart wearable devices to detect or monitor the posture and movement information of human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.N. Sokolov, B.-C.K. Tee, C.J. Bettinger, J.B.-H. Tok, Z. Bao, Chemical and engineering approaches to enable organic field effect transistors for electronic skin applications. Acc. Chem. Res. 45, 361–371 (2012). https://doi.org/10.1021/ar2001233

    Article  CAS  Google Scholar 

  2. S. Wagner, S. Bauer, Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012). https://doi.org/10.1557/mrs.2012.37

    Article  Google Scholar 

  3. A. Mehmooda, N.M. Mubaraka, M. Khalidb, R. Walvekarc, E.C. Abdullahd, M.T.H. Siddiquie, H.A. Baloche, S. Nizamuddine, S. Mazarif, Graphene based nanomaterials for strain sensor application—a review. J. Environ. Chem. Eng. 8, 3743 (2020). https://doi.org/10.1016/j.jece.2020.103743

    Article  CAS  Google Scholar 

  4. K.Y. Lee, M.K. Gupta, S.W. Kim, Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14, 139–160 (2015). https://doi.org/10.1016/j.nanoen.2014.11.009

    Article  CAS  Google Scholar 

  5. C.B. Han, C. Zhang, X.H. Li, L.M. Zhang, T. Zhou, W.G. Hu, Z.L. Wang, Self-powered velocity and trajectory tracking sensor array made of planar triboelectric nanogenerator pixe. Nano Energy 9, 325–333 (2014). https://doi.org/10.1016/j.nanoen.2014.07.025

    Article  CAS  Google Scholar 

  6. Z. Lou, S. Chen, L. Wang, K. Jiang, G. Shen, An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 23, 7–14 (2016). https://doi.org/10.1016/j.nanoen.2016.02.053

    Article  CAS  Google Scholar 

  7. C. Wang, X. Li, E. Gao, M. Jian, K. Xia, Q. Wang, Z. Xu, T. Ren, Y. Zhang, Carbonized silk fabric for ultra stretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 28, 6640–6648 (2016). https://doi.org/10.1002/adma.201601572

    Article  CAS  Google Scholar 

  8. Y. Ai, T.H. Hsu, D.C. Wu, L. Lee, J. Chen, Y.Z. Chen, S.C. Wu, C. Wu, Z.M. Wang, Y.L. Chueh, An ultrasensitive flexible pressure sensor for multimodal wearable electronic skins based on large-scale polystyrene ball@reduced graphene-oxide core-shell nanoparticles. J. Mater. Chem. C 6, 5514–5520 (2018). https://doi.org/10.1039/C8TC01153B

    Article  CAS  Google Scholar 

  9. J. Park, Y. Lee, J. Hong, M. Ha, Y.D. Jung, H. Lim, S.Y. Kim, H. Ko, Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 8, 4689–4697 (2014). https://doi.org/10.1021/nn500441k

    Article  CAS  Google Scholar 

  10. X.Q. Liao, Z. Zhang, Q.L. Liao, Q.J. Liang, Y. Ou, M.X. Xu, M.H. Li, G.J. Zhang, Y. Zhang, Flexible and printable paper-based strain sensors for wearable and large-area green electronics. Nanoscale 8, 13025–13032 (2016). https://doi.org/10.1039/C6NR02172G

    Article  CAS  Google Scholar 

  11. C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors. Adv. Mater 26, 2022–2027 (2014). https://doi.org/10.1002/adma.201304742

    Article  CAS  Google Scholar 

  12. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014). https://doi.org/10.1021/nn501204t

    Article  CAS  Google Scholar 

  13. Z. Chen, W. Zhao, X. Li, Y. Lin, N. Luo, M. Long, Z. Ni, J.B. Xu, Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 11, 4507–4513 (2017). https://doi.org/10.1021/acsnano.6b08027

    Article  CAS  Google Scholar 

  14. L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang, Y.Q. Chen, Y. Yang, T.L. Ren, Graphene-paper pressure sensor for detecting human motions. ACS Nano 11, 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826

    Article  CAS  Google Scholar 

  15. N. Awang, A.M. Nasir, M.A.M. Yajid, J. Jaafa, r, A review on advancement and future perspective of 3D hierarchical porous aerogels based on electrospun polymer nanofibers for electrochemical energy storage application. J. Environ. Chem. Eng. 9, 105437 (2021). https://doi.org/10.1016/j.jece.2021.105437

    Article  CAS  Google Scholar 

  16. L.R. Viannie, N.R. Banapurmath, M.E.M. Soudagar, A.V. Nandi, N. Hossain, A. Shellikeri, V. Kaulgud, M.A. Mujtaba, S.A. Khan, M. Asif, Electrical and mechanical properties of flexible multiwalled carbon nanotube/poly (dimethylsiloxane) based nanocomposite sheets. J. environ. Chem. Eng. 9, 106550 (2021). https://doi.org/10.1016/j.jece.2021.106550

    Article  CAS  Google Scholar 

  17. J.J. Park, W.J. Hyun, S.C. Mun, Y.T. Park, O.O. Park, Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 7, 6317–6324 (2015). https://doi.org/10.1021/acsami.5b00695

    Article  CAS  Google Scholar 

  18. Y.A. Samad, Y. Li, S.M. Alhassan, K. Liao, Novel graphene foam composite with adjustable sensitivity for sensor applications. ACS Appl. Mater. Interfaces 7, 9195–9202 (2015). https://doi.org/10.1021/acsami.5b01608

    Article  CAS  Google Scholar 

  19. D.Y. Wang, L.Q. Tao, Y. Liu, T.Y. Zhang, Y. Pang, Q. Wang, S. Jiang, Y. Yang, T.L. Ren, High performance flexible strain sensor based on self-locked overlapping graphene sheets. Nanoscale 8, 20090–20095 (2016). https://doi.org/10.1039/c6nr07620c

    Article  CAS  Google Scholar 

  20. Y. Pang, H. Tian, L. Tao, Y. Li, X.F. Wang, N.Q. Deng, Y. Yang, T.L. Ren, Flexible, highly sensitive, and wearable pressure and strain sensors with graphene porous network structure. ACS Appl. Mater. Interfaces 8, 26458–26462 (2016). https://doi.org/10.1021/acsami.6b08172

    Article  CAS  Google Scholar 

  21. Y. Pang, K. Zhang, Z. Yang, S. Jiang, Z.Y. Ju, Y. Li, X. Wang, D.Y. Wang, M. Jian, Y. Zhang, Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12, 2346–2354 (2018). https://doi.org/10.1021/acsnano.7b07613

    Article  CAS  Google Scholar 

  22. R. Andrea, T. Alessio, F. Marco, M.S. Sarto, A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 16, 2148 (2016). https://doi.org/10.3390/s16122148

    Article  CAS  Google Scholar 

  23. Y.A. Samad, Y. Li, A. Schiffer, S.M. Alhassan, K. Liao, Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications. Small 11, 2380–2385 (2015). https://doi.org/10.1002/smll.201403532

    Article  CAS  Google Scholar 

  24. Z. Yang, Y. Pang, X.L. Han, Y.F. Jiang, J. Ling, M.Q. Jian, Y.Y. Zhang, Y. Yang, T.L. Ren, Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12, 9134–9141 (2018). https://doi.org/10.1021/acsnano.8b03391

    Article  CAS  Google Scholar 

  25. H.B. Yao, J. Ge, C.F. Wang, X. Wang, W. Hu, Z.J. Zheng, Y. Ni, S.H. Yu, A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 25, 6692–6698 (2013). https://doi.org/10.1002/adma.201303041

    Article  CAS  Google Scholar 

  26. L. Lv, P. Zhang, T. Xu, L. Qu, Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl. Mater. Interfaces 9, 22885–22892 (2017). https://doi.org/10.1021/acsami.7b07153

    Article  CAS  Google Scholar 

  27. Y. Wei, Y. Qiao, G. Jiang, Y. Wang, T.L. Ren, A wearable skinlike ultra-sensitive artificial graphene throat. ACS Nano 13, 8639–8647 (2019). https://doi.org/10.1021/acsnano.9b03218

    Article  CAS  Google Scholar 

  28. W.S. Hummers Jr., R.E. Offeman, preparation of graphitic oxide. J Am Chem Soc 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  29. J. Bao, A. Zhang, Poly (methyl methacrylate) nanoparticles prepared through microwave emulsion polymerization. J. Appl. Polym. Sci. 93, 2815–2820 (2004). https://doi.org/10.1002/app.20758

    Article  CAS  Google Scholar 

  30. J. Zhang, L. Wu, D. Jing, J. Ding, A comparative study of porous scaffolds with cubic and spherical macropores. Polymer 46, 4979–4985 (2005). https://doi.org/10.1016/j.polymer.2005.02.120

    Article  CAS  Google Scholar 

  31. H.F. Lu, J. Zhang, J. Luo, W.B. Gong, C.W. Li, Q.L. Liu, K. Zhang, M. Hu, Y.G. Yao, Enhanced thermal conductivity of free-standing 3D hierarchical carbon nanotube-graphene hybrid paper. Composite A 102, 1–8 (2017). https://doi.org/10.1016/j.compositesa.2017.07.021

    Article  CAS  Google Scholar 

  32. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  Google Scholar 

  33. J. Ota, S.K. Hait, S.S.V. Ramakumar, Environment-friendly route for stable aqueous dispersion of reduced graphene oxide for heat transfer application. J. Nanosci. Nanotechnol. 13, 5942–5947 (2013). https://doi.org/10.1166/jnn.2013.7550

    Article  CAS  Google Scholar 

  34. C.M. Chen, Q. Zhang, C.H. Huang, Macroporous “bubble” graphene film via template-directed ordered-assembly for high-rate supercapacitors. Chem. Commun. 48, 7149–7151 (2012). https://doi.org/10.1039/c2cc32189k

    Article  CAS  Google Scholar 

  35. C. Li, D. Zhang, C. Deng, P. Wang, Y. Hu, Y. Bin, Z. Fan, L. Pan, High performance strain sensor based on buckypaper for full-range detection of human motions. Nanoscale 10(31), 14966–14975 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (61774084), by the Priority Academic Program Development of Jiangsu Higher Education Institutions, by the special fund of Jiangsu Province for the transformation of scientific and technological achievements (BA2019047), the open project of Key Laboratory of Materials Preparation and Protection for Harsh Environment, Ministry of Industry and Information Technology (XCA20013-3), and by funding of Jiangsu Innovation Program for Graduate Education (KYCX19_0175).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YY, HS, ZY, JY, ZW, and KG. The first draft of the manuscript was written by Yan Yang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Honglie Shen.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they have no conflict of interest. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4764 kb)

Supplementary file2 (MP4 2786 kb)

Supplementary file3 (MP4 37276 kb)

Supplementary file4 (MP4 15685 kb)

Supplementary file5 (DOCX 889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Shen, H., Yang, Z. et al. Highly flexible and sensitive wearable strain and pressure sensor based on porous graphene paper for human motion. J Mater Sci: Mater Electron 33, 17637–17648 (2022). https://doi.org/10.1007/s10854-022-08627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08627-6

Navigation