Skip to main content

Advertisement

Log in

Ni2P composite ZIF-67 derivatives and carbon nanotubes for high-performance lithium-sulfur batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries have high energy density, low cost, and environmental friendliness. They may become one of the most promising advanced energy storage devices. However, the poor electrical conductivity of elemental sulfur and discharge end-products and the infamous shuttle effect have hindered further development of lithium-sulfur batteries. To address these issues, in this work, we synthesized a unique hollow network structured material (Co-NC@CNTs@Ni2P) as a host material for sulfur by a simple hydrothermal method. Ni2P nanoparticles have a strong ability to trap polysulfides, ZIF-67-derived porous carbon (Co-NC) can confine sulfur in an ordered pore structure to alleviate the volume expansion problem, and the addition of modified CNT improves the poor electrical conductivity of the active material. The results show that the Co-NC@CNT@Ni2P/S composite has a high capacity and good cycle stability and the first discharge capacity at a 0.1 C current density reaches 1420.2 mAh/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. K. Liao, S. Chen, H. Wei et al., J Mater Chem A 6, 23062 (2018)

    Article  CAS  Google Scholar 

  2. Xu. Shikai, Le. Cai, P. Niu et al., Carbon 178, 256–264 (2021)

    Article  CAS  Google Scholar 

  3. L. Chen, W. Feng, Int J Electrochem Sci 14, 8048–8057 (2019)

    Article  CAS  Google Scholar 

  4. M. Yoshio, H. Tanaka, K. Tominaga, H. Noguchi, J Power Sources. 40, 347–353 (1992)

    Article  CAS  Google Scholar 

  5. J.R. Croy, D. Kim, M. Balasubramanian et al., J Electrochem Soc. 159, A781–A790 (2012)

    Article  CAS  Google Scholar 

  6. H.-W. Lee, P. Muralidharan, R. Ruffo et al., Nano Lett. 10, 3852–3856 (2012)

    Article  CAS  Google Scholar 

  7. C. Song, W. Feng, X. Wang, Z. Shi, Ionics 26, 661–672 (2020)

    Article  CAS  Google Scholar 

  8. Xu. Yang, K. Chu, Z. Li et al., Dalton Trans 49, 11597–11604 (2020)

    Article  Google Scholar 

  9. C. Ye, Y. Jiao, H. Jin et al., Angew Chem Int Ed. 57, 16703–16707 (2018)

    Article  CAS  Google Scholar 

  10. K. Chen, X. Wang, G. Wang et al., Chem Eng J. 347, 552–562 (2018)

    Article  CAS  Google Scholar 

  11. Y. Tang, D. Zhang, X. Qiu et al., J Alloys Compd. 809, 151855 (2019)

    Article  CAS  Google Scholar 

  12. L. Hu, C. Dai, H. Liu et al., Adv Energy Mater. 8, 1800709 (2018)

    Article  CAS  Google Scholar 

  13. G. Gao, W. Feng, W. Su, C. Song, M. Li, Int J Electrochem Sci. 2020, 1426–1436 (2020)

    Article  CAS  Google Scholar 

  14. G. Yasin, M. Arif, T. Mehtab et al., Energy Storage Mater 25, 644–678 (2020)

    Article  Google Scholar 

  15. J. Liu, J. Liang, C. Wang, J. Ma, J Energy Chem 33, 160–166 (2019)

    Article  Google Scholar 

  16. N. Li, K. Zhang, K. Xie et al., Adv Mater 32, 1907079 (2020)

    Article  CAS  Google Scholar 

  17. Z. Li, C. Li, X. Ge et al., Nano Energy 23, 15–26 (2016)

    Article  CAS  Google Scholar 

  18. J. Liu, S. Z. Hao XiaoZhang et al., Nanoscale 12, 5114–5124 (2020)

    Article  CAS  Google Scholar 

  19. W. Zhao, W. Feng, J. Chen, Ionics 28, 635–645 (2022)

    Article  CAS  Google Scholar 

  20. K. Wang, W. Li, W. Ye et al., J Alloys Compd. 793, 16–23 (2019)

    Article  CAS  Google Scholar 

  21. S. Guo, P. Zhang, Y. Feng et al., J Alloys Compd. 818, 152911 (2020)

    Article  CAS  Google Scholar 

  22. T. Mehtab, G. Yasin, M. Arif et al., J Energy Storage 21, 632–646 (2019)

    Article  Google Scholar 

  23. J. Guo, Y. Xu, C. Wang, Nano Lett. 11, 4288–4294 (2011)

    Article  CAS  Google Scholar 

  24. Y. Pan, Y. Liu, J. Zhao et al., J Mater Chem. A 3, 1656–1665 (2015)

    Article  CAS  Google Scholar 

  25. X. Gao, S. Li, Y. Du, B. Wang, APL Mater. 7, 91115 (2019)

    Article  CAS  Google Scholar 

  26. P. Geng, S. Cao, X. Guo et al., J Mater Chem A. 7, 19465–19470 (2019)

    Article  CAS  Google Scholar 

  27. Y. Zhang, Z. Jin, H. Yuan et al., Appl Surf Sci. 462, 213–225 (2018)

    Article  CAS  Google Scholar 

  28. Y. Lu, X. Wang, Y. Mai et al., J Phys Chem C. 116, 22217–22225 (2012)

    Article  CAS  Google Scholar 

  29. G. Yasin, M. Arif, T. Mehtab et al., Inorg Chem Front 7, 402–410 (2020)

    Article  CAS  Google Scholar 

  30. T. Wang, J. Wang, C. Zhang et al., Analyst 140, 5308–5316 (2015)

    Article  CAS  Google Scholar 

  31. X. Zhang, H. Yang, J. Guo et al., Nanotechnology 28, 475401 (2017)

    Article  CAS  Google Scholar 

  32. G. Yasin, S. Ibrahim, S. Ibraheem et al., J Mater Chem A 9, 18222 (2021)

    Article  CAS  Google Scholar 

  33. G. Yasina, M.A. Khanb, W.Q. Khan et al., Result Phys. 14, 102404 (2019)

    Article  Google Scholar 

  34. S. Ibraheem, G. Yasin, A. Kumar et al., Appl Catal B: Environ 304, 120987 (2022)

    Article  CAS  Google Scholar 

  35. Yu. Donglin, A. Kumar, T.A. Nguyen, ACS Sustain Chem Eng 8, 13769–13776 (2020)

    Article  CAS  Google Scholar 

  36. G. Zhou, E. Paek, G.S. Hwang, A. Manthiram, Nat Commun. 6, 7760 (2015)

    Article  CAS  Google Scholar 

  37. Y.S. Su, A. Manthiram, Nat Commun 3, 1166 (2012)

    Article  Google Scholar 

  38. M. Ling, W. Yan, A. Kawase et al., ACS Appl Mater Interfaces. 9, 31741–31745 (2017)

    Article  CAS  Google Scholar 

  39. B. Papandrea, X. Xu, Y. Xu et al., Nano Res. 9, 240–248 (2016)

    Article  Google Scholar 

  40. S. Tian, Y. Yin, Z. Cao et al., Ionics 24, 33–41 (2018)

    Article  CAS  Google Scholar 

  41. Y. Shi, J. Zhang, A.M. Bruck et al., Adv Mater. 29, 1603922 (2017)

    Article  CAS  Google Scholar 

  42. G. Yasin, M. Arif, J. Ma et al., Inorg Chem Front 9, 1058–1069 (2022)

    Article  CAS  Google Scholar 

  43. G. Hu, C. Xu, Z. Sun et al., Adv Mater. 28, 1603–1609 (2016)

    Article  CAS  Google Scholar 

  44. M. Yu, J. Ma, M. Xie et al., Adv Energy Mater. 7, 1602347 (2017)

    Article  CAS  Google Scholar 

  45. R. Fang, S. Zhao, P. Hou et al., Adv Mater. 28, 3374–3382 (2016)

    Article  CAS  Google Scholar 

  46. Z. Shi, W. Feng, X. Wang et al., J Alloys Compd. 851, 156289 (2021)

    Article  CAS  Google Scholar 

  47. A.B. Makar, K.E. McMartin, M. Palese, T.R. Tephly, Biochem Med. 13, 117–126 (1975)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21965019), HongLiu First-class Disciplines Development Program of Lanzhou University of Technology.

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 21965019).

Author information

Authors and Affiliations

Authors

Contributions

WF: Writing—review, Supervision & editing, WZ: Conceptualization, Methodology, Data curation, Writing—review & editing. ZS: Software, Data curation, Writing—review & editing. JC: Data curation, Writing—original draft.

Corresponding author

Correspondence to Wangjun Feng.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Zhao, W., Shi, Z. et al. Ni2P composite ZIF-67 derivatives and carbon nanotubes for high-performance lithium-sulfur batteries. J Mater Sci: Mater Electron 33, 17483–17492 (2022). https://doi.org/10.1007/s10854-022-08596-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08596-w

Navigation