Skip to main content

Advertisement

Log in

Boron-doped activated carbon from the stems of Prosopis juliflora as an effective electrode material in symmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For a supercapacitor electrode, carbon-based materials have received great attention for their high surface area and stability. In this work, sustainable and cost-effective synthesis of boron-doped activated biomass-derived carbon from the stems of Prosopis juliflora has been reported for supercapacitor applications. The activation by KOH creates pores and boron induces p-type doping in the carbon matrix. The material gave a higher specific capacitance of 307.14 F/g at a current density of 0.5 A/g. The symmetric supercapacitor device delivered 156.29 F/g of specific capacitance with 98.1% of energy efficiency. The observed energy and power densities were 7.81 Wh/Kg and 150 W/Kg, respectively. The device was further studied with stability test for 1000 charge/discharge cycles and showed 98.6% of capacitance retention and 97.9% of coulombic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data including Supplementary data are available.

References

  1. H. Choi, S. Jung, J. Seo, D. Wook, Nano Energy 1, 534–551 (2012). https://doi.org/10.1016/j.nanoen.2012.05.001

    Article  CAS  Google Scholar 

  2. D. Zhao, M. Dai, H. Liu, L. Xiao, X. Wu, H. Xia, Cryst. Growth Des. 19, 1921–1929 (2019). https://doi.org/10.1021/acs.cgd.8b01904

    Article  CAS  Google Scholar 

  3. D. Zhao, M. Dai, Y. Zhao, H. Liu, Y. Liu, X. Wu, Nano Energy 72, 104715 (2020)

    Article  CAS  Google Scholar 

  4. H. Liu, D. Zhao, M. Dai, X. Zhu, F. Qu, A. Umar, Chem. Eng. J. 428, 131183 (2022)

    Article  CAS  Google Scholar 

  5. D. Zhao, M. Dai, H. Liu, X. Zhu and X. Wu, Mater. Today Energy, 20, 100637 (1–6) (2021)

  6. D. Zhao, R. Zhang, M. Dai, H. Liu, W. Jian and F. Bai, small, 2107268, 1–9 (2022)

  7. J. Hou, Y. Shao, M.W. Ellis, B. Moore, B. Yi, Phys. Chem. Chem. Phys. 13, 15384–15402 (2011). https://doi.org/10.1039/c1cp21915d

    Article  CAS  Google Scholar 

  8. P. Forouzandeh, V. Kumaravel, S.C. Pillai, Catalysts 10, 969 (2020)

    Article  CAS  Google Scholar 

  9. M.A. Azam, N. Dorah, R.N.A.R. Seman, N.S.A. Manaf, T.I.T. Kudin, Mater. Technol. Adv. Funct. Mater. 30, 1–4 (2015). https://doi.org/10.1179/1753555714Y.0000000229

    Article  CAS  Google Scholar 

  10. Z. Yu, L. Tetard, L. Zhai, J. Thomas, Energy Environ. Sci. 8, 702–730 (2015). https://doi.org/10.1039/C4EE03229B

    Article  CAS  Google Scholar 

  11. M. Dai, D. Zhao, H. Liu, X. Zhu, X. Wu, B. Wang, A.C.S. Appl, Mater. Interfacesapplied 4, 2637–2643 (2021)

    CAS  Google Scholar 

  12. X. Chen, R. Paul, L. Dai, Nat. Sci. Rev. 4, 1–37 (2017). https://doi.org/10.1093/nsr/nwx009

    Article  CAS  Google Scholar 

  13. A. Bello, O.O. Fashedemi, J.N. Lekitima, M. Fabiane, D. Dodoo-arhin, I. Ozoemena, Y. Gogotsi, A.T.C. Johnson, N. Manyala, AIP Adv. (2014). https://doi.org/10.1063/1.4819270

    Article  Google Scholar 

  14. X. Li, B. Wei, Nano Energy 2, 159–173 (2013). https://doi.org/10.1016/j.nanoen.2012.09.008

    Article  CAS  Google Scholar 

  15. J. Mi, X. Wang, R. Fan, W. Qu, W. Li, Energy Fuels 26, 5321–5329 (2012). https://doi.org/10.1021/ef3009234

    Article  CAS  Google Scholar 

  16. P. Sennu, V. Aravindan, M. Ganesan, Y. Lee, Chem. Sus. Chem. 9, 849–854 (2016). https://doi.org/10.1002/cssc.201501621

    Article  CAS  Google Scholar 

  17. Y. Sun, J. Xue, S. Dong, Y. Zhang, Y. An, B. Ding, J. Mater. Sci. 55, 5166–5176 (2020). https://doi.org/10.1007/s10853-019-04343-5

    Article  CAS  Google Scholar 

  18. Y. Wang, Green Chem. 18, 4824–4854 (2016). https://doi.org/10.1039/c6gc01172a

    Article  Google Scholar 

  19. A. Jafar Ahamed, K. Riaz Ahamed, Asian J. Chem. 20, 1702–1706 (2008)

  20. G. Sim, S.H. Larsson, H.P. De Oliveira, Nanomaterials 10, 1–24 (2020)

    Google Scholar 

  21. S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong, A.N. Grace, Sci. Rep. 9, 1–15 (2019). https://doi.org/10.1038/s41598-019-52006-x

    Article  CAS  Google Scholar 

  22. D. Liu, S. Yu, Y. Shen, H. Chen, Z. Shen, S. Zhao, S. Fu, Y. Yu, B. Bao, Ind. Eng. Chem. Res. 54, 12570–12579 (2015). https://doi.org/10.1021/acs.iecr.5b02507

    Article  CAS  Google Scholar 

  23. X. Han, X. Guo, M. Xu, H. Pang, Rare Met. 39, 1099–1106 (2020)

    Article  CAS  Google Scholar 

  24. W. Zhao, J. Wen, Y. Zhao, Z. Wang, Y. Shi, Nanomaterials 10, 1–11 (2020)

    CAS  Google Scholar 

  25. D.V. Suriapparao, N. Pradeep, R. Vinu, Energy Fuels 29, 2571–2581 (2015). https://doi.org/10.1021/acs.energyfuels.5b00357

    Article  CAS  Google Scholar 

  26. H. M. Mohammed, T. H. M and A. A. A. Youssif, Int. J. Eng. Appl. Sci., 6, 52–56 (2019)

  27. V. Nair, R. Vinu, Bioresour. Technol. 216, 511–519 (2016)

    Article  CAS  Google Scholar 

  28. P. Sennu, N. Arun, S. Madhavi, V. Aravindan, Y.S. Lee, J. Power Sources 414, 96–102 (2019)

    Article  CAS  Google Scholar 

  29. P. Sennu, H.J. Choi, S.G. Baek, V. Aravindan, Y.S. Lee, Carbon 98, 58–66 (2016)

    Article  CAS  Google Scholar 

  30. R.S. Shanmugapriya, S. Surendran, Y.S. Lee, R. Kalaiselvan, Appl. Surf. Sci. 492, 896–908 (2019)

    Article  CAS  Google Scholar 

  31. R. Eschen, K. Bekele, P. Rima, S. Eckert, C.J. Kilawe, J. Appl. Ecol. 58, 1302–1313 (2021)

    Article  CAS  Google Scholar 

  32. N.A.V.M. Gokul, A. Femina, K.M. Meera, J. Eng. Sci. 6, 5–11 (2017)

    Google Scholar 

  33. J.M. Chem, J. Wang, S. Kaskel, J. Mater. Chem. 22, 23710–23725 (2012). https://doi.org/10.1039/c2jm34066f

    Article  CAS  Google Scholar 

  34. Y.X. Gan, J. Carbon Res. 7, 1–33 (2021)

    Google Scholar 

  35. G. Hasegawa, T. Deguchi, K. Kanamori, Y. Kobayashi, H. Kageyama, T. Abe, K. Nakanishi, Chem. Mater. 27, 4703–4712 (2015). https://doi.org/10.1021/acs.chemmater.5b01349

    Article  CAS  Google Scholar 

  36. R. Yao, J. Gu, H. He, T. Yu, Catalysts 10, 1–13 (2020)

    Google Scholar 

  37. L.S. Panchakarla, A. Govindaraj, C.N.R. Rao, Inorganica Chim. Acta 363, 4163–4174 (2010)

    Article  CAS  Google Scholar 

  38. R. Nankya, J. Lee, D.O. Opar, H. Jung, Appl. Surf. Sci. 489, 552–559 (2019)

    Article  CAS  Google Scholar 

  39. D. Johnsirani, A. Pandurangan, Diam. Relat. Mater. 105, 107800 (2020). https://doi.org/10.1016/j.diamond.2020.107800

    Article  CAS  Google Scholar 

  40. F. Raj, N.V. Jaya, G. Boopathi, D. Kalpan, A. Pandurangan, Mater. Chem. Phys. 240, 122151 (2020)

    Article  Google Scholar 

  41. B.Z.W. Zhifeng, Z. Xiaomin, L. Xiaoli, Z. Yongguang, Z. Weimin, L. Yongyan, Q. Chunling, J. Colloid Interface Sci. 569, 22–23 (2020)

    Article  Google Scholar 

  42. J. Gao, X. Wang, Y. Zhang, J. Liu, Q. Lu, M. Liu, Electrochim. Acta 207, 266–274 (2016)

    Article  CAS  Google Scholar 

  43. Y. Zhou, C.H. Yen, S. Fu, G. Yang, C. Zhu, D. Du, P.C. Wo, X. Cheng, J. Yang, C.M. Wai, Y. Lin, Green Chem. 17, 3552–3560 (2015)

    Article  CAS  Google Scholar 

  44. R. Ragavan, A. Pandurangan, Microporous Mesoporous Mater. 338, 111959 (2022)

    Article  CAS  Google Scholar 

  45. A. Phakkhawan, M. Horprathum, N. Chanlek, H. Nakajima, J. Mater. Sci. Mater. Electron. 33, 663–674 (2022)

    Article  CAS  Google Scholar 

  46. M. Sivachidambaram, J.J. Vijaya, L.J. Kennedy, R. Jothiramalingam, New J. Chem. 41, 3939–3949 (2017)

    Article  CAS  Google Scholar 

  47. N.M. Musyoka, B.K. Mutuma, RSC Adv. 10, 26928–26936 (2020)

    Article  CAS  Google Scholar 

  48. H. Eom, J. Kim I. Nam and S. Bae, Materials, 14, 6592 (1–12) (2021)

Download references

Funding

This work was supported by Anna University (Anna Centenary Research Fellowship (ACRF)). Author Johnsirani Devarajan has received research support from Anna University. The laboratory and instrumentation facilities were provided by DST-FIST sponsored Department of Chemistry, Anna University, Chennai—600025, Tamilnadu, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by JD. The first draft of the manuscript was written by JD. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pandurangan Arumugam.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 284 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devarajan, J., Arumugam, P. Boron-doped activated carbon from the stems of Prosopis juliflora as an effective electrode material in symmetric supercapacitors. J Mater Sci: Mater Electron 33, 17469–17482 (2022). https://doi.org/10.1007/s10854-022-08595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08595-x

Navigation