Skip to main content
Log in

Single and bivalent metal-cations co-doped ZnO nanopowders: synthesis and characterization

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ultraviolet light-based devices have received great attention due to their applications in various fields including health, industry, and water purification. In this view, we have developed energetic ultraviolet light-emitting zinc oxide (ZnO) nanoparticle powders by co-doping of single and bivalent metal-ions namely silver and manganese ions, i.e., Ag1+ and Mn2+. The as-synthesized ZnO nanoparticle powders were analyzed by characterizing with X-ray diffractometry, field-emission scanning electron microscopy, transmission electron microscopy, Raman microscopy, UV–Vis spectrometry, and Photoluminescence techniques. ZnO nanoparticle powders developed at a typical metal-ions doping concentration exhibited an enhanced optical band gap (~ 8.5%). Though the morphology and crystal structures of ZnO nanoparticle powders remain unchanged, their particle size decreased from 30 to 13 nm, and optical emission gradually decreased while increasing the doping concentrations of metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.C. Ong, A.S.K. Li, G.T. Du, Appl. Phys. Lett. 78, 2667 (2001)

    Article  CAS  Google Scholar 

  2. S.K. Marathe, P.M. Koinkar, S.S. Asthaputre, M.A. More, S.W. Gosavi, D.S. Joag, S.K. Kulkarni, Nanotechnology 17, 1932 (2006)

    Article  CAS  Google Scholar 

  3. S. Liu, F. Liu, Z. Wang, Chem. Phy. Lett. 343, 489 (2005)

    Article  Google Scholar 

  4. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Superlattices Microstruct. 34, 3 (2003)

    Article  CAS  Google Scholar 

  5. R.S. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308 (2011)

    Article  CAS  Google Scholar 

  6. T.-T. Xiong, D.-M. Li, W.-M. Shi, L.-J. Wang, J. Huang, C. Wang, Proc. SPIE 7381, 738124 (2009)

    Article  CAS  Google Scholar 

  7. T.L. Phan, S.C. Yu, R. Vincent, H.M. Bui, T.D. Thanh, V.D. Lam, Y.P. Lee, J. Appl. Phys. 108, 044910 (2010)

    Article  CAS  Google Scholar 

  8. H. Ohno, Science 281, 951 (1998)

    Article  CAS  Google Scholar 

  9. S. Maensiri, P. Laokul, S. Phokha, J. Magn. Magn. Mater. 305, 381 (2006)

    Article  CAS  Google Scholar 

  10. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  CAS  Google Scholar 

  11. M. He, Y.F. Tian, D. Springer, I.A. Putra, G.Z. Xing, E.E.M. Chia, S.A. Cheong, T. Wu, Appl. Phys. Lett. 99, 222511 (2011)

    Article  CAS  Google Scholar 

  12. U. Ozgur, Y. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S. Cho, H. Morkoc, J. Appl. Phys. 98, 041301 (2005)

    Article  CAS  Google Scholar 

  13. L. Schmide-Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007)

    Article  Google Scholar 

  14. F.H. Leiter, H.R. Alves, N.G. Romanov, D.M. Hofmann, B.K. Meyer, Phys. B (Amsterdam) 201, 340 (2003)

    Google Scholar 

  15. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, J. Appl. Phys. 95, 1246 (2004)

    Article  CAS  Google Scholar 

  16. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Viogt, Appl. Phys. Lett. 68, 403 (1996)

    Article  CAS  Google Scholar 

  17. P.S. Xu, Y.M. Sun, C.S. Chi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res. Sect. A 199, 286 (2003)

    Article  CAS  Google Scholar 

  18. E.G. Bylander, J. Appl. Phys. 49, 1188 (1978)

    Article  CAS  Google Scholar 

  19. M. Liu, A.H. Kitai, P. Mascher, J. Lumin. 54, 35 (1992)

    Article  CAS  Google Scholar 

  20. Y. Qiu, W. Chen, S. Yang, B. Zhang, X.X. Zhang, Y.C. Zhong, K.S. Wong, Cryst. Growth Des. 10, 17 (2010)

    Google Scholar 

  21. H. Li, Y. Huang, Q. Zhang, Y. Qiao, Y. Gu, J. Liu, Y. Zhang, Nanoscale 3, 654 (2011)

    Article  CAS  Google Scholar 

  22. J. Nayak, S. Kimura, S. Nozaki, H. Ono, K. Uchida, Superlattices Microstruct. 42, 438 (2007)

    Article  CAS  Google Scholar 

  23. B. Sankara Reddy, S. Venkatramana Reddy, P. Venkateswara Reddy, N. Koteeswara Reddy, J. Mater. Sci. 24, 5204–5210 (2013)

    CAS  Google Scholar 

  24. R. Ebrahimi, K. Hossienzadeh, A. Maleki, R. Ghanbari, R. Rezaee, M. Safari, B. Shahmoradi, H. Daraei, A. Jafari, K. Yetilmezsoy, S.H. Puttaiah, J. Environ. Health Sci. 17, 479–492 (2019)

    CAS  Google Scholar 

  25. M. Nirmala, P. Smitha, A. Anukaliani, Superlattices Microstruct. 50, 563 (2011)

    Article  CAS  Google Scholar 

  26. R.R. Thankalekshmi, S. Dixit, A.C. Rastogi, K. Samantha, R.S. Katiyar, Integr. Ferroelectr. 125, 130 (2011)

    Article  CAS  Google Scholar 

  27. R. Chauhan, A. Kumar, R.P. Chaudhary, Arch. Appl. Sci. Res. 2, 378 (2010)

    CAS  Google Scholar 

  28. V.D. Mote, Y. Purushotham, B.N. Dole, Cryst. Res. Technol. 46, 705 (2011)

    Article  CAS  Google Scholar 

  29. C.J. Cong, K.L. Zhang, Phys. Stat. Sol. (b) 243, 2764 (2006)

    Article  CAS  Google Scholar 

  30. N. Ahammed, M.S. Hassan, M. Hassan, Mater. Sci. 36, 419–426 (2018)

    CAS  Google Scholar 

  31. B.R. Kumar, B. Hymavathi, J. Asian Ceram. Soc. 5, 94–103 (2017)

    Article  Google Scholar 

  32. U. Godavarti, V.D. Mote, M. Dasari, J. Asian Ceram. Soc. 5, 391–396 (2017)

    Article  Google Scholar 

  33. J.M. Liu, C.K. Ong, L.C. Lim, Ferroelectrics 231, 223 (1999)

    Article  Google Scholar 

  34. B. Zhang, S. Zhou, H. Wang, Z. Du, Chin. Sci. Bull. 53, 1639 (2008)

    Google Scholar 

  35. M. Schumm, ZnO based semiconductors studied by Raman spectroscopy: semi magnetic alloying, doping and nano structures. Ph.D. thesis, Julius Maximilians Universitat Wurzburg, 2008

  36. C.J. Youn, T.S. Jeong, M.S. Han, J.H. Kim, J. Cryst. Growth. 261, 526 (2004)

    Article  CAS  Google Scholar 

  37. R.N. Bhargava, D. Gallagher, Phys. Rev. Lett. 72, 416 (1994)

    Article  CAS  Google Scholar 

  38. C. Ton-That, M. Foley, M.R. Phillips, Nanotechnology 19, 415–606 (2008)

    Article  CAS  Google Scholar 

  39. A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006)

    Article  CAS  Google Scholar 

  40. R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpat, P.V. Satyam, B.N. Dev, D.D. Sarma, J. Phys. Chem. B 108, 6303 (2004)

    Article  CAS  Google Scholar 

  41. Y.S. Wang, P.J. Thomas, P.J. O’Brien, J. Phys. Chem. B 110, 21412 (2006)

    Article  CAS  Google Scholar 

  42. A.G. Ali, F.B. Dejene, H.C. Swart, Cent. Eur. J. Phys. 10, 478 (2012)

    CAS  Google Scholar 

  43. N.S. Sabri, A.K. Yahya, M.K. Talari, J. Lumin. 132, 1735 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Dr. Y. Prabhakara Reddy (Retd.), Department of Physics, S. V. University, Tirupati for his help to do this work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkatramana Reddy.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, B.S., Sreenivasulu, B., Reddy, N.K. et al. Single and bivalent metal-cations co-doped ZnO nanopowders: synthesis and characterization. J Mater Sci: Mater Electron 33, 17462–17468 (2022). https://doi.org/10.1007/s10854-022-08591-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08591-1

Navigation