Skip to main content
Log in

Exploring the action of rare-earth yttrium dopant on enhancing electrochemical performance of LiNi0.5Mn1.5O4 material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Spinel LiNi0.5Mn1.5O4 (LNMO) has been considered as an appropriate cathode material for lithium-ion batteries because of its non-toxicity, high voltage platform and high energy density. Whereas, an occurrence of Jahn–Teller distortion in disordered structure of spinel is inevitable due to the presence of Mn3+ ion and the cycling behavior is inadequate. Hence, a citric acid-aided method is used to address above question by adding yttrium dopant. A series of characterization methods are measured. Characterization results display that Y3+ doping decreases lattice parameter and Mn3+ content, and results in a decrease in grain size for Y-doped LNMO samples. These changes by Y3+ doping can reduce the degree of electrochemical polarization and enhance insertion and extraction reaction of Li+. On the other hand, the changes can also improve structural stability and retard the Jahn–Teller distortion. Therefore, the effect of Y3+ doping on crystalline structure, grain morphology and Mn3+ concentration is revealed and displayed a positive effect on enhancing rate performance and cycling stability of LNMO. Compared to other three LNMO samples, LiNi0.49Mn1.49Y0.02O4 LNMO sample exhibits best rate capacity and delivers highest discharge retention rate of 98.8% after 100 cycles at 1 C. Our research demonstrates that yttrium doping to enhance the electrochemical properties of LiNi0.5Mn1.5O4 cathode materials is an efficacious route.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10

Similar content being viewed by others

Data availability

The data obtained from the experiment were in line with the research data policy. Moreover, the experimental data are real and valid.

References

  1. J.J. Li, W.M. Liu, Z.Z. Yu, J.Q. Deng, S.K. Zhong, Q. Xiao, F.M. Chen, D.L. Yan, N-doped C@ZnSe as a low cost positive electrode for aluminum-ion batteries: Better electrochemical performance with high voltage platform of ~1.8 V and new reaction mechanism. Electrochim. Acta. 370, 137790 (2021)

    Article  CAS  Google Scholar 

  2. G.W. Siqin, Q. Lu, W.H. Tian, Scalable synthesis of high-voltage LiNi0.5Mn1.5O4 with high electrochemical performances by a modified solid-state method for lithium ion batteries. Inorg Chem Commun. 134, 109067 (2021)

    Article  CAS  Google Scholar 

  3. Y. Han, Y.S. Jiang, Y. Xia, L. Deng, L.F. Que, F.-D. Yu, Z.B. Wang, Suppressed phase separation in spinel LiNi0.5Mn1.5O4 cathode via interstitial sites modulation. Nano Energy 91, 106636 (2022)

    Article  CAS  Google Scholar 

  4. A.J. Wei, J.P. Mu, R. He, X. Bai, X.H. Li, Y.J. Wang, Z.F. Liu, S. Wang, Li+ and Cl- co-doped LiNi0.5Mn1.5O4 cathode material with truncated octahedral shape and enhanced electrochemical performance for Li-ion batteries. Solid State Ionics 371, 115753 (2021)

    Article  CAS  Google Scholar 

  5. G.M. Liang, V.K. Peterson, K.W. See, Z.P. Guo, W.K. Pang, Developing high-voltage spinel cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. J. Mater. Chem. A. 8, 15373–15398 (2020)

    Article  CAS  Google Scholar 

  6. Z.I. Radzi, V. Balakrishnan, A.K. Pandey, M.Z. Kufian, N.A. Rahim, S.R.S. Raihan, S. Ramesh, Structural, electrical and electrochemical characterization of hybrid morphological LiNi0.5Mn1.5O4 cathode material. Phys. B Condens. Matter. 624, 413376 (2022)

    Article  CAS  Google Scholar 

  7. T.F. Kocak, L.Y. Wu, J. Wang, U. Savaci, S. Turan, X.G. Zhang, The effect of vanadium doping on the cycling performance of LiNi0.5Mn1.5O4 spinel cathode for high voltage lithium-ion batteries. J. Electroanal. Chem. 881, 114926 (2021)

    Article  CAS  Google Scholar 

  8. S. Wang, W.B. Hua, S. Zhuo, X.F. He, L.J. Liu, In situ synchrotron radiation study of Li+ de/intercalation behavior in spinel Chem LiNi0.5Mn1.5O4-δ. Eng. J. 400, 125998 (2020)

    CAS  Google Scholar 

  9. J.H. Gao, T. Yuan, S.N. Luo, J.F. Ruan, H. Sun, J.H. Yang, S.Y. Zheng, Boosting lithium ion storage of lithium nickel manganese oxide via conformally interfacial nonocoating. J. Colloid. Interf. Sci. 570, 153–163 (2020)

    Article  CAS  Google Scholar 

  10. J. Xiao, X. Chen, P.V. Sushko, M.L. Sushko, L. Kovarik, J. Feng, Z. Deng, J. Zheng, G.L. Graff, Z. Nie, D. Choi, J. Liu, J.-G. Zhang, M.S. Whittingham, High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv. Mater. 24, 2109–2116 (2012)

    Article  CAS  Google Scholar 

  11. S. Wang, J. Guo, Y.J. Li, D.W. Zhang, C.X. Li, X.G. Ren, S.W. Liu, Y.K. Xiong, S.P. Hao, J.C. Zheng, Achieving superior high-rate cyclability of LiNi0.5Mn1.5O4 cathode material via constructing stable CuO modification interface. J. Electroanal. Chem. 903, 115825 (2021)

    Article  CAS  Google Scholar 

  12. M. Mo, K.S. Hui, X.T. Hong, J.S. Guo, C.C. Ye, A.J. Li, N.Q. Hu, Z.Z. Huang, J.H. Jiang, J.Z. Liang, H.Y. Chen, Improved cycling and rate performance of Sm-doped LiNi0.5Mn1.5O4 cathode materials for 5V lithium-ion batteries. Appl. Surf. Sci. 290, 412–418 (2014)

    Article  CAS  Google Scholar 

  13. L.F. Lan, S. Li, J. Li, L. Lu, Y. Lu, S. Huang, S.J. Xu, C.Y. Pan, F.H. Zhao, Enhancement of the electrochemical performance of the spinel structure LiNi0.5-xGaxMn1.5O4 cathode material by Ga doping. Nanoscale Res. Lett. 13, 251 (2018)

    Article  CAS  Google Scholar 

  14. X.Y. Zheng, W.J. Liu, Q.T. Qu, H.H. Zheng, Y.H. Huang, Bi-functions of titanium and lanthanum co-doping to enhance the electrochemical performance of spinel LiNi0.5Mn1.5O4 cathode. J. Materiomics. 5, 156–163 (2019)

    Article  Google Scholar 

  15. S.S. Liu, H.Y. Zhao, M. Tan, Y.Z. Hu, B. Chen, X.Q. Liu, Er-doped LiNi0.5Mn1.5O4 cathode material with enhanced cycling stability for lithium-ion batteries. Materials 10, 859 (2017)

    Article  CAS  Google Scholar 

  16. W. Wei, X. Qin, J.L. Guo, J.F. Wang, H.Y. Yang, L. Wang, Influence of cerium doping on structure and electrochemical properties of LiNi0.5Mn1.5O4 cathode material. J. Rare Earths 35, 887 (2017)

    Article  CAS  Google Scholar 

  17. L.Z. Xiong, W.P. Liu, Y.X. Wu, Z.Q. He, Synthesis and characterization of LiNi0.49Mn1.49Y0.02O4@Ag by electroless plating technique. Appl. Surf. Sci. 328, 531–535 (2015)

    Article  CAS  Google Scholar 

  18. S. Li, L.F. Lan, L. Lu, Y. Lu, S.F. Li, J. Li, C.Y. Pan, F.H. Zhao, Cerium doped LiNi0.5Mn1.5O4 composite with improved high temperature performance as a cathode material for Li-ion batteries. AIP Adv. 9, 025210 (2019)

    Article  CAS  Google Scholar 

  19. W. Wu, J.L. Guo, X. Qin, C.B. Bi, J.F. Wang, L. Wang, G.C. Liang, Enhanced electrochemical performances of LiNi0.5Mn1.5O4 spinel in half-cell and full-cell via yttrium doping. J. Alloys Compd. 721, 721–730 (2017)

    Article  CAS  Google Scholar 

  20. F.C. Lin, J.B. Guo, L.Y. Wang, Y. Zhou, H.M. Wu, D.F. Zhou, Synergistic effect of Mg and Y co-dopants on enhancement of electrochemical properties of LiNi0.5Mn1.5O4 spinel. Electrochim. Acta. 399, 139433 (2021)

    Article  CAS  Google Scholar 

  21. X. Ji, X.Y. Dai, F.Z. Wu, Y. Mai, H.J. Chen, Y.J. Gu, In situ Sr2+-doped spinel LiNi0.5Mn1.5O4 cathode material for Li-ion batteries with high electrochemical performance and its impact on morphology. ceram. Int. 47, 32043–32052 (2021)

    CAS  Google Scholar 

  22. J.H. Kim, S.T. Myung, C.S. Yoon, S.G. Kang, Y.K. Sun, Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem. Mater. 16, 906–914 (2014)

    Article  CAS  Google Scholar 

  23. X. Kong, H.Y. Sun, Z.Z. Yi, B.S. Wang, G.G. Liu, Increased rate capability of Li+ doped LiNi0.5Mn1.5O4 prepared by a novel solution combustion synthesis. Mater. Technol. 31, 121–127 (2016)

    CAS  Google Scholar 

  24. J.P. Mu, L.H. Zhang, R. He, X.H. Li, X. Bai, L.X. Tian, X. Zhang, A.J. Wei, Z.F. Liu, Enhancing the electrochemical performance of LiNi0.5Mn1.5O4 cathode material by a conductive LaCoO3 coating. J. Alloys Compd. 865, 158629 (2021)

    Article  CAS  Google Scholar 

  25. Y. Deng, L. He, J. Ren, Q. Zheng, C. Xu, D. Lin, Reinforcing cycling stability and rate capability of LiNi0.5Mn1.5O4 cathode by dual-modification of coating and doping of a fast-ion conductor. Mater. Res. Bull. 100, 333–344 (2018)

    Article  CAS  Google Scholar 

  26. M. Keppeler, S. Nageswaran, S.J. Kim, M. Srinivasan, Silicon Doping of high voltage spinel LiNi0.5Mn1.5O4 towards superior electrochemical performance of lithium-ion batteries. Electrochimi. Acta 213, 904–910 (2016)

    Article  CAS  Google Scholar 

  27. J. Wang, W.Q. Lin, B.H. Wu, J.B. Zhao, Syntheses and electrochemical properties of the Na-doped LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Electrochimi. Acta. 145, 245–253 (2014)

    Article  CAS  Google Scholar 

  28. X.H. Shu, H.Y. Zhao, Y.Z. Hu, J.T. Liu, M. Tan, S.H. Liu, M.L. Zhang, Q.W. Ran, H. Li, X.Q. Liu, Magnesium and silicon co-doped LiNi0.5Mn1.5O4 cathode material with outstanding cycling stability for lithium-ion batteries. Vacuum 156, 1–8 (2018)

    Article  CAS  Google Scholar 

  29. B. Zong, Y.Q. Lang, S.H. Yan, Z.Y. Deng, J.J. Gong, J.L. Guo, L. Wang, G.C. Liang, Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Mater. Today. Commun. 24, 101003 (2020)

    Article  CAS  Google Scholar 

  30. L. Wang, D. Chen, J. Wang, G. Liu, W. Wu, G. Liang, Synthesis of LiNi0.5Mn1.5O4 cathode material with improved electrochemical performances through a modified solid-state method. Powder Technol. 292, 203–209 (2016)

    Article  CAS  Google Scholar 

  31. Y.J. Xiao, J.Q. Fan, X.Y. Zhang, D.Y. Zhang, C.K. Chang, Li2Ni0.5Mn1.5O4, spinel type cathode material with high reversible capacity. Electrochim. Acta 311, 170–177 (2019)

    Article  CAS  Google Scholar 

  32. R.N. Zhu, S.J. Zhang, Q.X. Guo, Y. Zhou, J.T. Li, P.F. Wang, Z.L. Gong, More than just a protection layer: Inducing chemical interaction between Li3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials. Electrochim. Acta. 342, 136074 (2020)

    Article  CAS  Google Scholar 

  33. P. Ram, H. Patel, R. Singhal, G. Choudhary, R.K. Sharma, On the study of mixing and drying on electrochemical performance of spinel LiMn2O4 cathodes. J. Renew. Sustain. Ener. 11, 014104 (2019)

    Article  CAS  Google Scholar 

  34. Z.L. Wang, T. Zhao, M. Takei, Morphological structure characterizations in Lithium-ion battery (LIB) slurry under shear rotational conditions by on-line dynamic electrochemical impedance spectroscopy (EIS) method. J. Electrochem. Soc. 164, A2268–A2276 (2017)

    Article  CAS  Google Scholar 

  35. B. Zong, Z.Y. Deng, S.H. Yan, Y.Q. Lang, J.J. Gong, J.L. Guo, L. Wang, G.C. Liang, Effects of Si doping on structural and electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. Powder Technol. 364, 725–737 (2020)

    Article  CAS  Google Scholar 

  36. A.J. Wei, W. Li, Q. Chang, X. Bai, R. He, L.H. Zhang, Z.F. Liu, Y.J. Wang, Effect of Mg2+/F- co-doping on electrochemical performance of LiNi0.5Mn1.5O4 for 5 V lithium-ion batteries. Electrochim. Acta 323, 134692 (2019)

    Article  CAS  Google Scholar 

  37. J.-H. Kim, S.-T. Myung, C.S. Yoon, S.G. Kang, Y.-K. Sun, Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem. Mater. 16, 906–914 (2004)

    Article  CAS  Google Scholar 

  38. A. Manthiram, K. Chemelewski, E.-S. Lee, A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 7, 1339–1350 (2014)

    Article  CAS  Google Scholar 

  39. C.J. Jafta, M.K. Mathe, N. Manyala, W.D. Roos, K.I. Ozoemena, Microwave-assisted synthesis of high-voltage nanostructured LiMn1.5Ni0.5O4 spinel: tuning the Mn3+ content and electrochemical performance. ACS Appl. Mater. Interfaces 5, 7592–7598 (2013)

    Article  CAS  Google Scholar 

  40. S. Müller, J. Eller, M. Ebner, C. Burns, J. Dahn, V. Wood, Quantifying in-homogeneity of lithium ion battery electrodes and its influence on electrochemical performance. J. Electrochem. Soc. 165, A339–A344 (2018)

    Article  CAS  Google Scholar 

  41. C. Gao, H.P. Liu, S.F. Bi, S.S. Fan, X.H. Meng, Q.Y. Li, C.G. Luo, Insight into the effect of graphene coating on cycling stability of LiNi0.5Mn1.5O4: integration of structure-stability and surface-stability. J. Materiomics. 6, 712–722 (2020)

    Article  Google Scholar 

  42. J.C. Deng, Y.L. Xu, L.L. Xiong, L. Li, X.F. Sun, Y. Zhang, Improving the fast discharge performance of high-voltage LiNi0.5Mn1.5O4 spinel by Cu2+, Al3+, Ti4+ tri-doping. J. Alloys Compd. 677, 18–26 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge financial support from Natural Science Foundation of China (52063005), Science and Technology Project of Guizhou (2016/5667) and (2021488), Science and Technology Foundation of Guizhou Province (2019/5635).

Funding

This work was financially supported by Natural Science Foundation of China (52063005), Science and Technology Project of Guizhou (2016/5667) and (2021488), Science and Technology Foundation of Guizhou Province (2019/5635).

Author information

Authors and Affiliations

Authors

Contributions

DZ: Experimental ideas and scheme design, Conducting research and investigation process. FL: Experimental ideas and scheme design, Writing-Original Draft preparation, Data curation, Writing—Reviewing and Editing. JG: Funding acquisition, Provision of study materials, reagents and materials. JS: Supervision, Writing-Reviewing and Editing.

Corresponding authors

Correspondence to Fangchang Lin, Jiling Song or Jianbing Guo.

Ethics declarations

Conflict of interest

All authors agree to the publication of the paper. On behalf of all authors declare no completing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Lin, F., Song, J. et al. Exploring the action of rare-earth yttrium dopant on enhancing electrochemical performance of LiNi0.5Mn1.5O4 material. J Mater Sci: Mater Electron 33, 16621–16637 (2022). https://doi.org/10.1007/s10854-022-08558-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08558-2

Navigation