Skip to main content
Log in

Nickel phthalocyanine-borophene nanocomposite-based electrodes for non-enzymatic electrochemical detection of glucose

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As diabetes has become one of the major health problems affecting hundreds of millions of people worldwide, the development of electrochemical sensors for the detection of glucose is crucial. Herein, the fabrication of nickel phthalocyanine (NiPc)-based and NiPc-borophene nanocomposite-based non-enzymatic electrochemical sensors for glucose detection at room temperature was demonstrated. The electrical conductivities of NiPc and NiPc-borophene nanocomposite have been measured as 3 × 10− 13 S cm−1 and 9.5 × 10−9 S cm−1, respectively. The electrical conductivity of NiPc has been improved with the addition of borophene. Due to the high charge transport advantages of the borophene additive, the sensor sensitivity and detection limit have been improved. In voltammetric cycle of 60 s for the 1.5–24 mM glucose concentration range, NiPc-based sensor has a sensitivity value of 0.08 µAmM−1 cm−2, while the NiPc-borofen nanocomposite-based sensor has a much higher sensitivity of 10.31 µAmM−1 cm−2. The limit of detection values of the NiPc and NiPc-borophene nanocomposite-based sensors are 3 µM and 0.15 µM, respectively. The borophene nanosheets with good chemical stability and high carrier mobility have been shown to be a good candidate to form nanocomposite structure with NiPc for glucose detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Raw data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. J.D. Newman, A.P.F. Turner, Biosens. Bioelectron. 20, 2435 (2005). https://doi.org/10.1016/j.bios.2004.11.012

    Article  CAS  Google Scholar 

  2. A. Gaoa, X. Zhanga, X. Penga, H. Wua, L. Baib, W. Jina, G. Wua, R. Hanga, P.K. Chua, Sens. Actuators B 232, 150 (2016). https://doi.org/10.1016/j.snb.2016.03.122

    Article  CAS  Google Scholar 

  3. J.E. Shaw, R.A. Sicree, P.Z. Zimmet, Diabetes Res. Clin. Pract. 87, 4 (2010). https://doi.org/10.1016/j.diabres.2009.10.007

    Article  CAS  Google Scholar 

  4. Q. Yi, W. Huang, W. Yu, L. Li, X. Liu, Electroanalysis 20, 206 (2008). https://doi.org/10.1002/elan.200804282

    Article  CAS  Google Scholar 

  5. R. Wang, X. Liang, H. Liu, L. Cui, X. Zhang, C. Liu, Microchim. Acta 185, 339 (2018). https://doi.org/10.1007/s00604-018-2866-7

    Article  CAS  Google Scholar 

  6. K.K. Lee, P.Y. Loh, C.H. Sow, W.S. Chin, Electrochem. Commun. 20, 128 (2012). https://doi.org/10.1016/j.elecom.2012.04.012

    Article  CAS  Google Scholar 

  7. S. SoYoon, A. Ramadoss, B. Saravanakumar, S.J. Kim, J. Electroanal. Chem. 717–718, 90 (2014). https://doi.org/10.1016/j.jelechem.2014.01.012

    Article  CAS  Google Scholar 

  8. G. He, L. Tian, Y. Cai, S. Wu, Y. Su, H. Yan, W. Pu, J. Zhang, L. Li, Nanoscale Res. Lett. 13, 3 (2018). https://doi.org/10.1186/s11671-017-2406-0

    Article  CAS  Google Scholar 

  9. C. Tasaltın, T.A. Türkmen, N. Tasaltın, S. Karakus, J. Mater. Sci.: Mater. Electron. 32, 10750 (2021). https://doi.org/10.1007/s10854-021-05732-w

    Article  CAS  Google Scholar 

  10. N. Taşaltın, E. Aydın, S. Karakuş, A. Kilislioğlu, Appl. Phys. A 126, 827 (2020). https://doi.org/10.1007/s00339-020-03960-1

    Article  CAS  Google Scholar 

  11. L. Ozcan, Y. Sahin, H. Türk, Biosens. Bioelectron. 24, 512 (2008). https://doi.org/10.1016/j.bios.2008.05.004

    Article  CAS  Google Scholar 

  12. C. Li, Y. Su, X. Lv, H. Xia, H. Shi, X. Yang, J. Zhang, Y. Wang, Biosens. Bioelectron. 38, 402 (2012). https://doi.org/10.1016/j.bios.2012.04.049

    Article  CAS  Google Scholar 

  13. S. Mori, M. Nagata, Y. Nakahata, K. Yasuta, R. Goto, M. Kimura, M. Taya, J. Am. Chem. Soc. 132, 4054 (2010). https://doi.org/10.1021/ja9109677

    Article  CAS  Google Scholar 

  14. J.H. Zagal, S. Griveau, J.F. Silva, T. Nyokong, F. Bedioui, Coord. Chem. Rev. 254, 2755 (2010). https://doi.org/10.1016/j.ccr.2010.05.001

    Article  CAS  Google Scholar 

  15. P. Vasudevan, N. Phougat, A.K. Shukla, Appl. Organomet. Chem. 10, 591 (1996)

    Article  CAS  Google Scholar 

  16. M.M. Fadlallah, U. Eckern, A.H. Romero, U. Schwingenschlögl, New J. Phys. 18, 013003 (2016)

    Article  Google Scholar 

  17. K.P. Madhuri, N.S. John, Bull. Mater. Sci. 41, 118 (2018). https://doi.org/10.1007/s12034-018-1636-9

    Article  CAS  Google Scholar 

  18. C.W. Foster, J.Pillay,J.P. Metters, C.E. Banks, Sensors 14(11), 21905 (2014). https://doi.org/10.3390/s141121905

    Article  CAS  Google Scholar 

  19. C.D. Kuhnline, M.G. Gangel, M.K. Hulvey, R.S. Martin, Analyst 131(2), 202 (2006). https://doi.org/10.1039/B511153F

    Article  CAS  Google Scholar 

  20. W.J.R. .Santos, A.L. Sousa, R.C.S. Luz, F.S. Damos, L.T. Kubota, A. A.Tanaka, S. M.C.N.Tanaka, Talanta 70, 588 (2006). https://doi.org/10.1016/j.talanta.2006.01.023

    Article  CAS  Google Scholar 

  21. L.S. Vilakazi, T. Nyokong, J. Electroanal. Chem. 512, 56 (2001). https://doi.org/10.1016/S0022-0728(01)00583-6

    Article  CAS  Google Scholar 

  22. B.O. Agboola, S.L. Vilakazi, K.I. Ozoemena, J. Solid State Electrochem. 13, 1367 (2009). https://doi.org/10.1007/s10008-008-0691-3

    Article  CAS  Google Scholar 

  23. C.A. Caro, F. Bedioui, M.A. Páez, G.I. Cárdenas-Jiron, J.H. Zagal, J. Electrochem. Soc. 151, E32 (2004). https://doi.org/10.1149/1.1631822

    Article  CAS  Google Scholar 

  24. M.S. Liao, S. Scheiner, J. Chem. Phys. 114, 9780 (2001). https://doi.org/10.1063/1.1367374

    Article  CAS  Google Scholar 

  25. A.T. Chidembo, K.I. Ozoemena, B.O. Agboola, V. Gupta, G.G. Wildgoose, R.G. Compton, Energy Environ. Sci. 3, 228 (2010). https://doi.org/10.1039/B915920G

    Article  CAS  Google Scholar 

  26. L. Cui, T. Pu, Y. Liu, X. He, Electrochim. Acta 88, 559 (2013). https://doi.org/10.1016/j.electacta.2012.10.127

    Article  CAS  Google Scholar 

  27. H. Al-Sagur, S. Komathi, M.A. Khan, A.G. Gurek, A. Hassan, Biosens. Bioelectron. 92, 638 (2017). https://doi.org/10.1016/j.bios.2016.10.038

    Article  CAS  Google Scholar 

  28. S. Chaiyo, E. Mehmeti, W. Siangproh, T.L. Hoang, H.P. Nguyen, O. Chailapakul, K. Kalcher, Biosens. Bioelectron. 102, 113 (2018). https://doi.org/10.1016/j.bios.2017.11.015

    Article  CAS  Google Scholar 

  29. K.R. Mounesh, R. Venugopal, Fasiulla, Anal. Chem. Lett. 10, 2 (2020). https://doi.org/10.1080/22297928.2020.1760132

    Article  CAS  Google Scholar 

  30. S. Guo, S. Dong, J. Mater. Chem. 21(46), 18503 (2011). https://doi.org/10.1039/C1JM13228H

    Article  CAS  Google Scholar 

  31. D. Li, R.B. Kaner, Science 320, 1170 (2008). doi:https://doi.org/10.1126/science.1158180

    Article  CAS  Google Scholar 

  32. Z. Zhang, Y. Yang, G. Gao, B.I. Yakobson, Angew. Chem. Int. Ed. 127, 13214 (2015). https://doi.org/10.1002/anie.201505425

    Article  CAS  Google Scholar 

  33. Z. Zhang, S.N. Shirodkar, Y. Yang, B.I. Yakobson, Angew. Chem. Int. Ed. 129, 15623 (2017). https://doi.org/10.1002/anie.201705459

    Article  CAS  Google Scholar 

  34. L. Liu, Z. Zhang, X. Liu, X. Xuan, B.I. Yakobson, M.C. Hersam, W. Guo, Nano Lett. 20(2), 1315 (2020). https://doi.org/10.1021/acs.nanolett.9b04798

    Article  CAS  Google Scholar 

  35. Z. Zhang, A.J. Mannix, X. Liu, Z. Hu, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Near-equilibrium growth from borophene edges on silver. Sci. Adv. 5, eaax0246 (2019). DOI:https://doi.org/10.1126/sciadv.aax0246

    Article  CAS  Google Scholar 

  36. Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Adv. Funct. Mater. 27(9), 605059 (2017). https://doi.org/10.1002/adfm.201605059

    Article  CAS  Google Scholar 

  37. Z. Zhuhua, E.S. Penev, B.I. Yakobson, Chem. Soc. Rev. 46(22), 6746 (2017). https://doi.org/10.1039/C7CS00261K

    Article  Google Scholar 

  38. L. Liu, Z. Zhang, X. Liu, X. Xuan, B.I. Yakobson, M.C. Hersam, W. Guo, Nano Lett. 20, 1315 (2020). https://doi.org/10.1021/acs.nanolett.9b04798

    Article  CAS  Google Scholar 

  39. I. Gürol, V. Ahsena, Ö. Bekaroğlu, J. Chem. Soc. Dalton Trans. 4, 497 (1994). https://doi.org/10.1039/DT9940000497

    Article  Google Scholar 

  40. M. Ma, T. Zhe, Y. Ma, Z. Wang, Q. Chen, J. Wang, Talanta 180, 133 (2018). DOI:https://doi.org/10.1016/j.talanta.2017.12.052

    Article  CAS  Google Scholar 

  41. M. Ou, X. Wang, L. Yu, C. Liu, W. Tao, X. Ji, L. Mei, Adv. Sci. 8, 2001801, 1 (2021). https://doi.org/10.1002/advs.202001801

    Article  CAS  Google Scholar 

  42. S. Güngör, C. Taşaltın, İ Gürol, G. Baytemir, S. Karakuş, N. Taşaltın, Appl. Phys. A 128, 89 (2022). https://doi.org/10.1007/s00339-021-05228-8

    Article  CAS  Google Scholar 

  43. R. Ridhi, S. Singh, G.S. S.Saini, S.K. Tripathi, J. Phys. Chem. Solids 115, 119 (2018). https://doi.org/10.1016/j.jpcs.2017.10.046

    Article  CAS  Google Scholar 

  44. C. Sittig, M. Textor, N.D. Spencer, M. Wieland, P.H. Vallotton, J. Mater. Sci.: Mater. Med. 10, 35 (1999). https://doi.org/10.1023/a:1008840026907

    Article  CAS  Google Scholar 

  45. A.S. Mahmoud, R.S. Farag, M.M. Elshfai, Egypt. J. Petroleum 29, 9 (2020). https://doi.org/10.1016/j.ejpe.2019.09.001

    Article  Google Scholar 

  46. F.S. Torre, J.R. Rosa, B.I. Kharisov, C.J. Lucio-Ortiz, Materials 6, 10, 4324 (2013). doi:https://doi.org/10.3390/ma6104324

    Article  Google Scholar 

  47. S. Keshipour, S. Mohammad-Alizadeh, Sci. Rep. 11, 16148 (2021). https://doi.org/10.1038/s41598-021-95382-z

    Article  CAS  Google Scholar 

  48. K.W. Iwao Matsuda, 2D Boron: Boraphene, Borophene, Boronene, 1st edn. (Springer, Cham, 2021)

    Book  Google Scholar 

  49. H.-S. Tsai, C.-H. Hsiao, Y.-P. Lin, C.-W. Chen, H. Ouyang, J.-H. Liang, Small 12(38), 5251 (2016). https://doi.org/10.1002/smll.201601915

    Article  CAS  Google Scholar 

  50. T.V. Basova, V.G. Kiselev, B.-E. Schuster, H. Peisert, T. Chassé, J. Raman Spetrosc. 40, 2080 (2009). https://doi.org/10.1002/jrs.2375

    Article  CAS  Google Scholar 

  51. H. Chand, A. Kumar, V. Krishnan, Adv. Mater. Interfaces 8, 2100045 (2021). https://doi.org/10.1002/admi.202100045

    Article  CAS  Google Scholar 

  52. L. Kong, K. Wu, L. Chen, Front. Phys. 13, 138105 (2018). https://doi.org/10.1007/s11467-018-0752-8

    Article  Google Scholar 

  53. L. Dengfeng, C. Ying, H. Jia, T. Qiqi, Z. Chengyong, D. Guangqian, Chin. Phys. B 27, 036303 (2018). https://doi.org/10.1088/1674-1056/27/3/036303

    Article  CAS  Google Scholar 

  54. Z.-Q. Wang, T.-Y. Lü, H.-Q. Wang, Y.P. Feng, J.-C. Zheng, Front. Phys. 14(2), 23403 (2019). https://doi.org/10.1007/s11467-019-0884-5

    Article  CAS  Google Scholar 

  55. M. Nacef, M.L. Chelaghmia, A.M. Affoune, M. Pontié, Electroanalysis 31(1), 113 (2019). https://doi.org/10.1002/elan.201800622

    Article  CAS  Google Scholar 

  56. K. Wang, J.-J. Xu, H.-Y. Chen, Biosens. Bioelectron. 20, 1388 (2005). https://doi.org/10.1016/j.bios.2004.06.006

    Article  CAS  Google Scholar 

  57. E. Crouch, D.C. Cowell, S. Hoskins, R.W. Pittson, J.P. Hart, Biosens. Bioelectron. 21, 712 (2005). https://doi.org/10.1016/j.bios.2005.01.003

    Article  CAS  Google Scholar 

  58. H. Wang, Y. Bu, W. Dai, K. Li, H. Wang, X. Zuo, Sens. Actuators B 216, 298 (2015). https://doi.org/10.1016/j.snb.2015.04.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support.

Funding

This work was supported by TUBITAK. (Grant Number: 120N816)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by GB, İG, NT, SK and CT. The first draft of the manuscript was written by GB, NT contributed to conceptualization, methodology, reviewing, and editing of the manuscript. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gülsen Baytemir or Nevin Taşaltın.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baytemir, G., Gürol, İ., Karakuş, S. et al. Nickel phthalocyanine-borophene nanocomposite-based electrodes for non-enzymatic electrochemical detection of glucose. J Mater Sci: Mater Electron 33, 16586–16596 (2022). https://doi.org/10.1007/s10854-022-08551-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08551-9

Navigation