Skip to main content

Advertisement

Log in

Thermoelectric textiles with nanostructured copper iodide films on cotton and polyester fabrics, stabilized and reinforced with nanocellulose

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Inexpensive, flexible and durable, efficient thermoelectric (TE) fabrics have been developed for thermoelectric generators (TEGs) to power wearable electronics by harvesting body heat. To do this, we impregnated commercial cotton (Ct) and polyester (PET) fabrics with nanocellulose (NC) hydrogel prepared by TEMPO-mediated oxidation of organosolv pulp from common reed (Phragmites australis), and thus improved the functional properties of fabrics with NC by creating NC/Ct and NC/PET nanocomposites. For the production of thermoelectric textiles, we deposited nanostructured copper iodide (CuI) films on pure cotton and polyester fabrics, as well as on NC/Ct and NC/PET nanocomposites, using a low-temperature, low-cost, simple, and scalable water-based deposition method Successive Ionic Layer Adsorption and Reaction (SILAR). Transmission and scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction and X-ray fluorescence analysis, optical spectrophotometry, and measurement of deviations in the electrical resistance of TE fabrics during continuous and cyclic bending were used to study the effect of NC hydrogel dilution with water on changes in the structure and properties of nanocellulose coatings on fabric fibers, which affects the functionality of TE textiles. Studies have shown the benefits of using dilute NC hydrogel in terms of thermoelectric performance and wear resistance of TE textiles, confirming their ability to generate electricity from human body heat. For single-leg TEGs based on CuI/NC/Ct and CuI/NC/PET textiles, whose nanocomposites were obtained using dilute NC hydrogel, continuous deformation for 24 h at a nominal bending strain εnom = 5.56% did not cause cracking, interfacial separation, or an increase in internal resistance of more than 1.7%. An analysis of the change in their electrical resistance at 5 and 100 bending and release cycles at εnom up to 3.3% showed that the relative increase in resistance did not exceed 5%, which confirms their sufficient flexibility and ability to withstand to mechanical forces applied by the user when worn on the body. After five cycles of such tests, the output power density of a single-leg TEG based on CuI/NC/PET thermoelectric textile reached 3 μW/cm2 at a temperature difference of 50 K between cold and hot chromium contacts. Its open-circuit output voltage was 2.9 mV. Thus, due to the creation of nanocomposites of fabrics and nanocellulose, the achieved TE characteristics correspond to promising flexible materials for wearable thermoelectrics based on fibers and, at the same time, are characterized by high wear resistance in operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Y. Du, J. Xu, B. Paul, P. Eklund, Flexible thermoelectric materials and devices. Appl. Mater. Today 12, 366–388 (2018)

    Article  Google Scholar 

  2. Y. Zhang, S.-J. Park, Flexible organic thermoelectric materials and devices for wearable green energy harvesting. Polymers 11(5), 909 (2019)

    Article  CAS  Google Scholar 

  3. W.-Y. Chen, X.-L. Shi, J. Zou, Z.-G. Chen, Wearable fiber-based thermoelectrics from materials to applications. Nano Energy 81, 105684 (2021)

    Article  CAS  Google Scholar 

  4. Z. Fan, Y. Zhang, L. Pan, J. Ouyang, Q. Zhang, Recent developments in flexible thermoelectrics: from materials to devices. Renew. Sustain. Energy Rev. 137, 110448 (2021)

    Article  Google Scholar 

  5. A.A. Nozariasbmarz, H. Collins, K. Dsouza, M.H. Polash, M. Hosseini, M. Hyland, J. Liu, A. Malhotra, F.M. Ortiz, F. Mohaddes, V.P. Ramesh, Y. Sargolzaeiaval, N. Snouwaert, M.C. Özturk, D. Vashaee, Review of wearable thermoelectric energy harvesting: from body temperature to electronic systems. Appl. Energy 258, 114069 (2020)

    Article  Google Scholar 

  6. M. Ito, T. Koizumi, H. Kojima, T. Saito, M. Nakamura, From materials to device design of a thermoelectric fabric for wearable energy harvesters. J. Mater. Chem. A 5, 12068 (2017)

    Article  CAS  Google Scholar 

  7. Y. Zheng, Q. Zhang, W. Jin, Y. Jing, X. Chen, X. Han, Q. Bao, Y. Liu, X. Wang, S. Wang, Y. Qiu, C. Di, K. Zhang, Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. J. Mater. Chem. A. 8, 2984–2994 (2020)

    Article  CAS  Google Scholar 

  8. M. Hyland, H. Hunter, J. Liu, E. Veety, D. Vashaee, Wearable thermoelectric generators for human body heat harvesting. Appl. Energy 182, 518–524 (2016)

    Article  Google Scholar 

  9. A.R.M. Siddique, S. Mahmud, B.V. Heyst, A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renew. Sustain. Energy Rev. 73, 730–744 (2017)

    Article  Google Scholar 

  10. Y. Wang, Y. Shi, D. Mei, Z. Chen, Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 215, 690–698 (2018)

    Article  CAS  Google Scholar 

  11. J. Choi, E.W. Zaia, M. Gordon, J.J. Urban, Weaving a new world: Wearable thermoelectric textiles. Curr. Trends Fashion Technol. Textile Eng. 17002772(2), 555583 (2018)

    Google Scholar 

  12. E. Ismar, S.K. Bahadir, F. Kalaoglu, V. Koncar, Futuristic clothes: electronic textiles and wearable technologies. Global Chall. 4, 1900092 (2020)

    Article  Google Scholar 

  13. Q. Wu, J. Hu, Bringing thermoelectricity into reality (IntechOpen, London, 2018), pp. 24–37

    Google Scholar 

  14. N.P. Klochko, V.A. Barbash, S.I. Petrushenko, V.R. Kopach, K.S. Klepikova, D.O. Zhadan, O.V. Yashchenko, V.M. Dukarov, V.M. Sukhov, A.L. Khrypunova, Thermoelectric textile devices with thin films of nanocellulose and copper iodide. J. Mater. Sci. 32, 23246–23265 (2021)

    CAS  Google Scholar 

  15. R. Saremi, N. Borodinov, A.M. Laradji, S. Sharma, I. Luzinov, S. Minko, Adhesion and stability of nanocellulose coatings on flat polymer films and textiles. Molecules 25, 3238-1-3238–18 (2020)

    Article  CAS  Google Scholar 

  16. A. Liyanapathiranage, M.J. Pena, S. Sharma, S. Minko, Nanocellulose-based sustainable dyeing of cotton textiles with minimized water pollution. ACS Omega 5, 9196–9203 (2020)

    Article  CAS  Google Scholar 

  17. M.Y. Khalid, A. Al Rashid, Z.U. Arif, W. Ahmed, H. Arshad, Recent advances in nanocellulose-based different biomaterials: types, properties, and emerging applications. J. Mater. Res. Technol. 14, 2601–2623 (2021)

    Article  CAS  Google Scholar 

  18. D. Neto, P.B. Silva, Textile structure reinforcement with nanocellulose for individual protection equipment. Biomed. J. Sci. Technol. Res. 27(1), 20402–20409 (2020)

    Google Scholar 

  19. A. Bridarolli, O. Nechyporchuk, M. Odlyha, M. Oriola, R. Bordes, K. Holmberg, M. Anders, A. Chevalier, L. Bozec, Nanocellulose-based materials for the reinforcement of modern canvas-supported paintings. Stud. Conserv. 63(S1), 332–334 (2018)

    Article  CAS  Google Scholar 

  20. E.J. Shin, S.M. Choi, High performance fabrics using nanocellulose. Trends Textile Eng. Fashion Technol. 3(3), 340–342 (2018)

    Google Scholar 

  21. D.P. Chattopadhyay, B.H. Patel, Synthesis, characterization and application of nano cellulose for enhanced performance of textiles. J. Textile Sci. Eng. 6, 248–255 (2016)

    Google Scholar 

  22. C. Yang, D. Souchay, M. Knei, M. Bogner, H.M. Wei, M. Lorenz, O. Oeckler, G. Benstetter, Y.Q. Fu, M. Grundmann, Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nat. Commun. 8, 16076 (2017)

    Article  CAS  Google Scholar 

  23. F.F. Jaldurgam, Z. Ahmad, F. Touati, Low-toxic, earth-abundant nanostructured materials for thermoelectric applications. Nanomaterials 11, 895 (2021)

    Article  CAS  Google Scholar 

  24. O. Caballero-Calero, J.R. Ares, M. Martín-González, Environmentally friendly thermoelectric materials: high performance from inorganic components with low toxicity and abundance in the earth. Adv. Sustain. Syst. 5(11), 2100095-1-2100095–19 (2021)

    Article  Google Scholar 

  25. N.P. Klochko, K.S. Klepikova, V.R. Kopach, I.I. Tyukhov, D.O. Zhadan, G.S. Khrypunov, S.I. Petrushenko, S.V. Dukarov, V.M. Lyubov, M.V. Kirichenko, A.L. Khrypunova, Semitransparent p-CuI and n-ZnO thin films prepared by low temperature solution growth for thermoelectric conversion of near-infrared solar light. Sol. Energy 171, 704–715 (2018)

    Article  CAS  Google Scholar 

  26. N.P. Klochko, D.O. Zhadan, K.S. Klepikova, S.I. Petrushenko, V.R. Kopach, G.S. Khrypunov, V.M. Lyubov, S.V. Dukarov, A.L. Khrypunova, Semi-transparent copper iodide thin films on flexible substrates as p-type thermolegs for a wearable thermoelectric generator. Thin Solid Films 683, 34–41 (2019)

    Article  CAS  Google Scholar 

  27. N.P. Klochko, K.S. Klepikova, D.O. Zhadan, V.R. Kopach, S.M. Chernyavskaya, S.I. Petrushenko, S.V. Dukarov, V.M. Lyubov, A.L. Khrypunova, Thermoelectric textile with fibers coated by copper iodide thin film. Thin Solid Films 704, 138026 (2020)

    Article  CAS  Google Scholar 

  28. V. Barbash, O. Yashchenko, Preparation, properties and use of nanocellulose from non-wood plant materials, in Novel nanomaterials. ed. by K. Krishnamoorthy (IntechOpen, London, 2020)

    Google Scholar 

  29. V.A. Barbash, O.V. Yashchenko, A.S. Gondovska, I.M. Deykun, Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks. Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01749-z

    Article  Google Scholar 

  30. N.P. Klochko, V.R. Kopach, I.I. Tyukhov, G.S. Khrypunov, V.E. Korsun, V.O. Nikitin, V.M. Lyubov, M.V. Kirichenko, O.N. Otchenashko, D.O. Zhadan, M.O. Maslak, A.L. Khrypunova, Wet chemical synthesis of nanostructured semiconductor layers for thin-film solar thermoelectric generator. Sol. Energy 157, 657–666 (2017)

    Article  CAS  Google Scholar 

  31. B.M.M. Faustino, D. Gomes, J. Faria, T. Juntunen, G. Gaspar, C. Bianchi, A. Almeida, A. Marques, I. Tittonen, I. Ferreira, CuI p-type thin films for highly transparent thermoelectric p-n modules. Sci. Rep. 8(1), 6867 (2018)

    Article  CAS  Google Scholar 

  32. J. Coroa, B.M.M. Faustino, A. Marques, C. Bianchi, T. Koskinen, T. Juntunen, I. Tittonen, I. Ferreira, Highly transparent copper iodide thin film thermoelectric generator on a flexible substrate. RSC Adv. 9(61), 35384–35391 (2019)

    Article  CAS  Google Scholar 

  33. T. Ding, K.H. Chan, Y. Zhou, X.-Q. Wang, Y. Cheng, T. Li, G.W. Ho, Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11(1), 1–8 (2020)

    Article  CAS  Google Scholar 

  34. S.J. Kim, J.H. We, B.J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7(6), 1959–1965 (2014)

    Article  CAS  Google Scholar 

  35. S. Yang, P. Qiu, L. Chen, X. Shi, Recent developments in flexible thermoelectric devices. Small Sci. 1(7), 21000051–210000517 (2021)

    Article  Google Scholar 

  36. X. Sun, Q. Wu, S. Ren, T. Lei, Comparison of highly transparent all-cellulose nanopaper prepared using sulfuric acid and TEMPO-mediated oxidation methods. Cellulose 22(2), 1123–1133 (2015)

    Article  CAS  Google Scholar 

  37. T. Abitbol, A. Rivkin, Y. Cao, Y. Nevo, E. Abraham, T. Ben-Shalom, S. Lapidot, O. Shoseyov, Nanocellulose, a tiny fiber with huge applications. Curr. Opin. Biotechnol. 39, 76–88 (2016)

    Article  CAS  Google Scholar 

  38. N.P. Klochko, V.A. Barbash, K.S. Klepikova, V.R. Kopach, I.I. Tyukhov, O.V. Yashchenko, D.O. Zhadan, S.I. Petrushenko, S.V. Dukarov, V.M. Sukhov, A.L. Khrypunova, Biodegradable flexible transparent films with copper iodide and biomass-derived nanocellulose for ultraviolet and high-energy visible light protection. Sol. Energy 220, 852–863 (2021)

    Article  CAS  Google Scholar 

  39. L. Cabrales, N. Abidi, F. Manciu, Characterization of developing cotton fibers by confocal raman microscopy. Fibers 2(4), 285–294 (2014)

    Article  Google Scholar 

  40. P. Blanchart, A. Dembelé, C. Dembelé, M. Pléa, L. Bergström, R. Granet, V. Sol, V. Gloaguen, M. Degot, P. Krausz, Mechanism of traditional Bogolan dyeing technique with clay on cotton fabric. Appl. Clay Sci. 50(4), 455–460 (2010)

    Article  CAS  Google Scholar 

  41. C. Orrabalis, D. Rodríguez, L.G. Pampillo, C. Londoño-Calderón, M. Trinidad, R. Martínez-García, Characterization of nanocellulose obtained from cereus forbesii (a South american cactus). Mater. Res. 22(6), e20190243-1-e20190243-10 (2019)

    Article  CAS  Google Scholar 

  42. Y.A. Stetsiv, M.M. Yatsyshyn, D. Nykypanchuk, S.A. Korniy, I. Saldan, O.V. Reshetnyak, T.J. Bednarchuk, Characterization of polyaniline thin films prepared on polyethylene terephthalate substrate. Polym. Bull. 78, 6251–6265 (2021)

    Article  CAS  Google Scholar 

  43. I.K. Eiogu, U. Ibeneme, O.M. Aiyejagbara, Identification of polyethylene terephthalate (PET) polymer using X-ray diffractogarm method: part 1. Am. J. Nano Res. Appl. 8(4), 58–62 (2020)

    CAS  Google Scholar 

  44. D. Singh, H.K. Malik, C.K. Gupta, V. Singh, X-Ray diffraction studies for identification of polyethylene terephthalate fibres. Indian J. Sci. Technol. 10(17), 1–4 (2017)

    Google Scholar 

  45. K. Wang, Q. Ma, Y. Zhang, S. Wang, G. Han, Ag NPs-assisted synthesis of stable Cu NPs on PET fabrics for antibacterial and electromagnetic shielding performance. Polymers 12(4), 783-1-783–13 (2020)

    Article  Google Scholar 

  46. A. Da Rosa, J. Ordóñez, Fundamentals of Renewable Energy Processes, 4th edn. (Academic Press, Cambridge, 2022)

    Google Scholar 

  47. N.P. Klochko, V.A. Barbash, K.S. Klepikova, V.R. Kopach, I.I. Tyukhov, O.V. Yashchenko, D.O. Zhadan, S.I. Petrushenko, S.V. Dukarov, V.M. Sukhov, A.L. Khrypunova, Efficient biodegradable flexible hydrophobic thermoelectric material based on biomass-derived nanocellulose film and copper iodide thin nanostructured layer. Sol. Energy 212, 231–240 (2020)

    Article  CAS  Google Scholar 

  48. D.K. Kaushik, M. Selvaraj, S. Ramu, A. Subrahmanyam, Thermal evaporated Copper Iodide (CuI) thin films: a note on the disorder evaluated through the temperature dependent electrical properties. Sol. Energy Mater. Sol. Cells 165, 52–58 (2017)

    Article  CAS  Google Scholar 

  49. M. Kneiβ, C. Yang, J. Barzola-Quiquia, G. Benndorf, H. von Wenckstern, P. Esquinazi, M. Lorenz, M. Grundmann, Suppression of grain boundary scattering in multifunctional p-type transparent γ-CuI thin films due to interface tunneling currents. Adv. Mater. Interfaces 5(6), 1701411 (2018)

    Article  CAS  Google Scholar 

  50. C. Yang, M. Kneiβ, M. Lorenz, M. Grundmann, Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. Proc. Nat. Acad. Sci. 113(46), 12929–12933 (2016)

    Article  CAS  Google Scholar 

  51. Y. Yang, L. Shuman, K. Keisaku, Synthesis of well-dispersed CuI nanoparticles from an available solution precursor. Chem. Lett. 34(8), 1158–1159 (2005)

    Article  CAS  Google Scholar 

  52. K. Uetani, K. Hatori, Thermal conductivity analysis and applications of nanocellulose materials. Sci. Technol. Adv. Mater. 18(1), 877–892 (2017)

    Article  CAS  Google Scholar 

  53. K. Chatterjee, T.K. Ghosh, Thermoelectric materials for textile applications. Molecules 26, 3154-1-3154–27 (2021)

    Article  Google Scholar 

  54. S.-I. Park, J.-H. Ahn, X. Feng, S. Wang, Y. Huang, J.A. Rogers, Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv. Func. Mater. 18(18), 2673–2684 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Ministry of Education and Science of Ukraine for financial support of the experimental part of this work concerning environmentally friendly technologies for processing non-wood plant raw materials into nanocellulose composite materials for green flexible electronics under Project Number 2301-a.

Funding

Funding was provided by Ministry of Education and Science of Ukraine (2301-a).

Author information

Authors and Affiliations

Authors

Contributions

NPK: conceptualization, methodology, validation, writing -original draft. VAB: conceptualization, methodology, validation, writing—original draft. KSK: methodology, investigation, formal analysis, visualization, writing—review and editing. SIP: investigation, writing—review and editing. VRK: methodology, validation, writing—review and editing. OVY: investigation, writing—review and editing. SVD: investigation, writing—review and editing. VMS: investigation, writing—review and editing. ALK: writing—review and editing.

Corresponding author

Correspondence to K. S. Klepikova.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klochko, N.P., Barbash, V.A., Klepikova, K.S. et al. Thermoelectric textiles with nanostructured copper iodide films on cotton and polyester fabrics, stabilized and reinforced with nanocellulose. J Mater Sci: Mater Electron 33, 16466–16487 (2022). https://doi.org/10.1007/s10854-022-08538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08538-6

Navigation