Skip to main content
Log in

Nanocrystallization and optical properties of quaternary Sn–Se–Bi–Te chalcogenide thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films of the pre-melt quenched bulk samples of (SnSe4)95-x(Bi2Te3)5+x (x = 0, 5, 15) system have been prepared by thermal evaporation technique. The structural and optical properties of these thin films have been investigated utilizing normal transmittance spectra. Various parameters like linear refractive index (n) determined using Swanepoel method, dielectric constants (εr and εi), optical conductivity (σopt) determined using the linear refractive index, extinction coefficient (k), and absorption coefficient (α) have been evaluated. The optical bandgap (Egopt), direct and indirect (\({E}_{\text{g}}^{\text{dir}}\) and \({E}_{\text{g}}^{\text{ind}}\)), has been determined using the Tauc extrapolation method, and the bandgap values are found to decrease from 1.81 to 1.67 eV and 1.02 to 0.89 eV, respectively. Egopt values show a similar trend to the theoretically calculated bandgap. The observed change in the optical parameters has been explained based on the decreasing defect states in the system. The nonlinear properties of the aforementioned system have also been reported. The results revealed that with the addition of metallic elements Bi and Te there is an increase in the semiconducting behavior of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the relevant data are included in the article.

References

  1. A.S. Mathur, S. Upadhyay, P.P. Singh, B. Sharma, P. Arora, V.K. Rajput, P. Kumar, D. Singh, B.P. Singh, Role of defect density in absorber layer of ternary chalcogenide Cu2SnS3 solar cell. Opt. Mater. 119, 111314 (2021). https://doi.org/10.1016/j.optmat.2021.111314

    Article  CAS  Google Scholar 

  2. Y. Takagaki, B. Jenichen, M. Ramsteiner, A. Trampert, Interfacial resistance switching characteristics in metal-chalcogenide junctions using Bi–Cu–Se, Bi–Ag–Se, and Sb–Cu–Te alloys. J. Alloy. Compd. 824, 153880 (2020). https://doi.org/10.1016/j.jallcom.2020.153880

    Article  CAS  Google Scholar 

  3. P. Su, R. Pujari, V. Boodhoo, S. Aggarwal, P. Bhattacharya, O. Maksimov, K. Wada, S. Merlo, H.B. Bhandari, L.C. Kimerling, A. Agarwal, Ternary lead chalcogenide alloys for mid-infrared detectors. J. Electron. Mater. 49, 4577–4580 (2020). https://doi.org/10.1007/s11664-020-08114-w

    Article  CAS  Google Scholar 

  4. S. Ding, S. Dai, Z. Cao, C. Liu, J. Wu, Composition dependence of the physical and acousto-optic properties of transparent Ge–As–S chalcogenide glasses. Opt. Mater. 108, 110175 (2020). https://doi.org/10.1016/j.optmat.2020.110175

    Article  CAS  Google Scholar 

  5. P. Sharma, V. Sharma, E. Sharma, A. Dahshan, K.A. Aly, P. Kumar, A. Khan, A. Kumar, Rare-earth (Dy)-doped (GeS2)80(In2S3)20 thin film: Influence of annealing temperature in argon environment on the linear and nonlinear optical parameters. Appl. Phys. A 127, 68 (2021). https://doi.org/10.1007/s00339-020-04170-5

    Article  CAS  Google Scholar 

  6. M. Xu, S.J. Akobs, R. Mazzarello, J.Y. Cho, Z. Yang, H. Hollermann, D. Shang, X. Miao, Z. Yu, L. Wang, M. Wuttig, Impact of pressure on the resonant bonding in the chalcogenides. J. Phys. Chem. 121, 25447–25454 (2017). https://doi.org/10.1021/acs.jpcc.7b07546

    Article  CAS  Google Scholar 

  7. M. Behera, N.C. Mishra, S.A. Khan, R. Naik, Influence of 120 MeV Ag swift heavy ion irradiation on the optical and electronic properties of As–Se–Bi chalcogenide thin films. J. Non-Cryst. Solids 544, 120191 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120191

    Article  CAS  Google Scholar 

  8. S.M. El-Sayed, G.A.M. Amin, Structure, optical absorption and electrical conductivity of amorphous AsSeGe thin films. Vacuum 62, 353–360 (2001). https://doi.org/10.1016/S0042-207X(01)00352-9

    Article  CAS  Google Scholar 

  9. B.J. Eggleton, T.D. Vo, R. Pant, J. Schr, M.D. Pelusi, D. Yong Choi, S.J. Madden, B. Luther-Davies, Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides. Laser Photonics Rev. 6, 97–114 (2012). https://doi.org/10.1002/lpor.201100024

    Article  CAS  Google Scholar 

  10. H. Nasu, K. Kubodera, M. Kobayashi, M. Nakamura, K. Kamiya, Third-harmonic generation from some chalcogenide glasses. J. Am. Ceram. Soc. 73, 1794–1796 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb09838.x

    Article  CAS  Google Scholar 

  11. I. Aggarwal, J. Sanghera, Development and applications of chalcogenide glass optical fibers at NRL. J. Optoelectron. Adv. Mater. 4, 665–678 (2002)

    CAS  Google Scholar 

  12. Z. Wang, C.T.Y. Li, Q. Chen, The effects of Sn and Bi additions on properties and structure in Ge-Se-Te chalcogenide glass. J. Non-Cryst. Solids 191, 132–137 (1995). https://doi.org/10.1016/0022-3093(95)00249-9

    Article  CAS  Google Scholar 

  13. R. Sharma, S.C. Katyal, S. Khanna, V. Sharma, P. Sharma, Study of amorphous Sn–Se–Bi–Te semiconducting materials at an average coordination number <r> = 2.4. Mater. Res. Express 6, 075209 (2019). https://doi.org/10.1088/2053-1591/ab1667

    Article  CAS  Google Scholar 

  14. N. Afify, M.A. Hussein, N. El-Kabany, N. Fathy, Structural transformations on Se0.8Te0.2 chalcogenide glass. J. Non Cryst. Solids 354, 3260–3266 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.02.011

    Article  CAS  Google Scholar 

  15. R. Swanepoel, Determination of the thickness and optical constants of amorphous Ge–Se–Bi thin films. J. Phys. E. 16, 1214 (1983). https://doi.org/10.1088/0022-3735/16/12/023

    Article  CAS  Google Scholar 

  16. E. Sharma,  P. B. Barman, and P. Sharma, Evaluation of optical linear and non-linear parameters of thermally deposited GeTeSeGa thin films in NIR (1 μm–2.6 μm) wavelength range from their transmission spectra. Optik, 219, 165181 (2020).

    Article  CAS  Google Scholar 

  17. H.E. Kondakci, M. Yaman, O. Koylu, A. Dana, M. Bayindir, All-chalcogenide glass omnidirectional photonic band gap variable infrared filters. Appl. Phys. Lett. 94, 111110 (2009). https://doi.org/10.1063/1.3103279

    Article  CAS  Google Scholar 

  18. G.A.N. Connell, A.J. Lewis, Comments on the evidence for sharp and gradual optical absorption edges in amorphous germanium. Phys. Status Solidi (b) 60, 291 (1973). https://doi.org/10.1002/pssb.2220600132

    Article  CAS  Google Scholar 

  19. A.S. Hassanien, R. Neffati, K.A. Aly, Impact of Cd-addition upon optical properties and dispersion parameters of thermally evaporated CdxZn1-xSe films: discussions on bandgap engineering, conduction and valence band positions. Optik 212, 164681 (2020). https://doi.org/10.1016/j.ijleo.2020.164681

    Article  CAS  Google Scholar 

  20. J. Tauc, Optical properties of amorphous semiconductors, amorphous and liquid semiconductors (Plenum Press, New York, 1979)

    Google Scholar 

  21. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  22. R.R. Reddy, Y. Nazeer Ahammed, K. Rama Gopal, D.V. Raghuram, Optical electronegativity and refractive index of materials. Opt. Mater. 10, 95–100 (1998). https://doi.org/10.1016/S0925-3467(97)00171-7

    Article  CAS  Google Scholar 

  23. J.A. Duffy, Trends in energy gaps of binary compounds: an approach based upon electron transfer parameters from optical spectroscopy. J. Phys. C 13, 2979 (1980). https://doi.org/10.1088/0022-3719/13/16/008

    Article  CAS  Google Scholar 

  24. K.A. Aly, Discussion on the interrelationship between structural, optical, electronic and elastic properties of materials. J. Alloys Compd. 630, 178–182 (2015). https://doi.org/10.1016/j.jallcom.2014.10.079

    Article  CAS  Google Scholar 

  25. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi B 131, 415–427 (1985). https://doi.org/10.1002/pssb.2221310202

    Article  CAS  Google Scholar 

  26. N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors. Phys. Status Solidi B 93, K155–K160 (1979). https://doi.org/10.1002/pssb.2220930257

    Article  CAS  Google Scholar 

  27. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962). https://doi.org/10.1103/PhysRev.128.2093

    Article  CAS  Google Scholar 

  28. R.R. Reddy, Y. Nazeer Ahammed, A study on the Moss relation. Infrared Phys. Technol. 36, 825–830 (1995). https://doi.org/10.1016/1350-4495(95)00008-M

    Article  CAS  Google Scholar 

  29. M. Kastner, Bonding bands, lone-pair bands, and impurity states in chalcogenide semiconductors. Phys. Rev. Lett. 28, 355 (1972). https://doi.org/10.1103/PhysRevLett.28.355

    Article  CAS  Google Scholar 

  30. R. Sharma, E. Sharma, P.K. Singh, P. Sharma, Study of some network parameters for chalcogenide glasses at an average coordination number 2.4. AIP Conf. Proc. 2050, 020019 (2018). https://doi.org/10.1063/1.5083606

    Article  CAS  Google Scholar 

  31. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767 (1973). https://doi.org/10.1103/PhysRevB.7.3767

    Article  CAS  Google Scholar 

  32. S.H. Wemple, M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971). https://doi.org/10.1103/PhysRevB.3.1338

    Article  Google Scholar 

  33. W.G. Spitzer, H.Y. Fan, Determination of optical constants and carrier effective mass of semiconductors. Phys. Rev. 106, 882 (1957). https://doi.org/10.1103/PhysRev.106.882

    Article  CAS  Google Scholar 

  34. P. Halevi, F. Ramos-Mendieta, Tunable photonic crystals with semiconducting constituents. Phys. Rev. Lett. 85, 1875 (2000). https://doi.org/10.1103/PhysRevLett.85.1875

    Article  CAS  Google Scholar 

  35. H. Ticha, L. Tichy, Semiempirical relation between nonlinear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater. 4, 381–386 (2002)

    CAS  Google Scholar 

  36. F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Determination and analysis of the dispersive optical constants of some organic thin films. Physica B 351, 53–58 (2004). https://doi.org/10.1016/j.physb.2004.05.010

    Article  CAS  Google Scholar 

  37. J.I. Pankove, Optical processes in semiconductors (Dover Publications Inc., NewYork, 1975)

    Google Scholar 

  38. K.A. Aly, Comment on the relationship between electrical and optical conductivity used in several recent papers published in the journal of materials science: materials in electronics. J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07496-9

    Article  Google Scholar 

  39. G.L. Tan, L.K. DeNoyer, R.H. French, M.J. Guittet, M. Gautier-Soyer, Kramers-Kronig transform for the surface energy loss function. J. Electron. Spectros. Relat. Phenomena 142, 97–103 (2005). https://doi.org/10.1016/j.elspec.2004.09.002

    Article  CAS  Google Scholar 

  40. A.S. Hassanien, I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-xSbxSe50Te35 thin films: influences of Sb upon some optical characterizations and physical parameters. J. Alloys Compd. 798, 750–763 (2019). https://doi.org/10.1016/j.jallcom.2019.05.252

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author (RS) gratefully acknowledges the Jaypee University of Information Technology, Waknaghat, India for providing experimental facilities.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. No financial assistance has been received for this work.

Author information

Authors and Affiliations

Authors

Contributions

RS: Experimental and methodology. SS: Methodology and writing—original draft. AD: Methodology and formal analysis. KAA: Methodology and formal analysis. PS: Conceptualization, writing—review & editing, and supervision.

Corresponding authors

Correspondence to Rajan Sharma or Sunanda Sharda.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose. If a conflict of interest is identified after publication, the authors will submit an Erratum.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Sharda, S., Aly, K.A. et al. Nanocrystallization and optical properties of quaternary Sn–Se–Bi–Te chalcogenide thin films. J Mater Sci: Mater Electron 33, 16320–16333 (2022). https://doi.org/10.1007/s10854-022-08524-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08524-y

Navigation