Skip to main content
Log in

In situ growth of nanocarbon-coated Ni particles by PECVD for enhanced microwave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heterogeneous interfaces are of particular interest for developing highly efficient microwave absorbing materials. In this work, nanocarbon layer was in situ grown on the surface of Ni particles by plasma-enhanced chemical vapor deposition (PECVD), which created heterogeneous interfaces between nanocarbon materials and Ni particles via physical interactions. The defects of nanocarbon layer could be controlled by changing the mixture of reaction gas, resulting in tunable permittivity. Significant enhancement of microwave absorbing performance was obtained for the nanocarbon-coated Ni composites due to the enhanced impedance matching and polarization relaxations. The percentage bandwidths with reflection loss ≤  − 10 dB for the nanocarbon-coated composites were considerably larger than that for the original composite at any specified thickness in the range of 1.50 ∼ 5.00 mm. Quantitative loss analysis revealed that the energy dissipations of nanocarbon-coated composites originated from synergistic magnetic and dielectric losses, where dielectric loss was even predominate in high-frequency region. It is expected that the current method would provide an effective way for the optimal design of microwave absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. R. Tan, J. Zhou, Z. Yao, B. Wei, J. Zu, H. Lin, Z. Li, Ferrero Rocher® chocolates-like FeCo/C microspheres with adjustable electromagnetic properties for effective microwave absorption. J. Alloys Compd. 857, 157568 (2021). https://doi.org/10.1016/j.jallcom.2020.157568 (157561–157514)

    Article  CAS  Google Scholar 

  2. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2102812 (2021). https://doi.org/10.1002/adfm.202102812 (2102811–2102819)

    Article  CAS  Google Scholar 

  3. J. Feng, F. Pu, Z. Li, X. Li, X. Hu, J. Bai, Interfacial interactions and synergistic effect of CoNi nanocrystals and nitrogen-doped graphene in a composite microwave absorber. Carbon 104, 214–225 (2016). https://doi.org/10.1016/j.carbon.2016.04.006

    Article  CAS  Google Scholar 

  4. X. Zhang, F. Yan, S. Zhang, H. Yuan, C. Zhu, X. Zhang, Y. Chen, Hollow N-doped carbon polyhedron containing CoNi alloy nanoparticles embedded within few-layer N-doped graphene as high-performance electromagnetic wave absorbing material. ACS Appl. Mater. Interfaces 10, 24920–24929 (2018). https://doi.org/10.1021/acsami.8b07107

    Article  CAS  Google Scholar 

  5. L. He, Y. Zhao, L. Xing, P. Liu, Z. Wang, Y. Zhang, Y. Wang, Y. Du, Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. RSC Adv. 8, 2971–2977 (2018). https://doi.org/10.1039/c7ra12984j

    Article  CAS  Google Scholar 

  6. R. Kuchi, H.M. Nguyen, V. Dongquoc, P.C. Van, H. Ahn, D. Duong Viet, D. Kim, D. Kim, J.-R. Jeong, Optimization of FeNi/SWCNT composites by a simple co-arc discharge process to improve microwave absorption performance. J. Alloys Compd. 852, 156712 (2021). https://doi.org/10.1016/j.jallcom.2020.156712 (156711–156719)

    Article  CAS  Google Scholar 

  7. X. Qu, Y. Zhou, X. Li, M. Javid, F. Huang, X. Zhang, X. Dong, Z. Zhang, Nitrogen-doped graphene layer-encapsulated NiFe bimetallic nanoparticles synthesized by an arc discharge method for a highly efficient microwave absorber. Inorg. Chem. Front. 7, 1148–1160 (2020). https://doi.org/10.1039/c9qi01577a

    Article  CAS  Google Scholar 

  8. P. Xie, H. Li, B. He, F. Dang, J. Lin, R. Fan, C. Hou, H. Liu, J. Zhang, Y. Ma, Z. Guo, Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6, 8812–8822 (2018). https://doi.org/10.1039/c8tc02127a

    Article  CAS  Google Scholar 

  9. J. Qiao, X. Zhang, C. Liu, L. Lyu, Z. Wang, L. Wu, W. Liu, F. Wang, J. Liu, Facile fabrication of Ni embedded TiO2/C core-shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption. Compos. B 200, 108343 (2020). https://doi.org/10.1016/j.compositesb.2020.108343 (108341–108349)

    Article  CAS  Google Scholar 

  10. M. Fu, Q. Jiao, Y. Zhao, Preparation of NiFe2O4 nanorod–graphene composites via an ionic liquid assisted one-step hydrothermal approach and their microwave absorbing properties. J. Mater. Chem. A 1, 5577–5586 (2013). https://doi.org/10.1039/c3ta10402h

    Article  CAS  Google Scholar 

  11. X. Xu, G. Wang, G. Wan, S. Shi, C. Hao, Y. Tang, G. Wang, Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption. Chem. Eng. J. 382, 122980 (2020). https://doi.org/10.1016/j.cej.2019.122980 (122981–122912)

    Article  CAS  Google Scholar 

  12. S. Ghosh, K. Ganesan, S.R. Polaki, S. Ilango, S. Amirthapandian, S. Dhara, M. Kamruddin, A.K. Tyagi, Flipping growth orientation of nanographitic structures by plasma enhanced chemical vapor deposition. RSC Adv. 5, 91922–91931 (2015). https://doi.org/10.1039/c5ra20820c

    Article  CAS  Google Scholar 

  13. S. Ghosh, S.R. Polaki, N. Kumar, S. Amirthapandian, M. Kamruddin, K.K. Ostrikov, Process-specific mechanisms of vertically oriented graphene growth in plasmas. Beilstein J. Nanotechnol. 8, 1658–1670 (2017). https://doi.org/10.3762/bjnano.8.166

    Article  CAS  Google Scholar 

  14. N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S.S. Dhesi, H. Marchetto, Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506–3514 (2008). https://doi.org/10.1002/adfm.200800951

    Article  CAS  Google Scholar 

  15. H. Zhang, C. Shi, Z. Jia, X. Liu, B. Xu, D. Zhang, G. Wu, FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption. J. Colloid Interface Sci. 584, 382–394 (2021). https://doi.org/10.1016/j.jcis.2020.09.122

    Article  CAS  Google Scholar 

  16. J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu, B. Wang, G. Wu, Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5 (171–116)

    Article  CAS  Google Scholar 

  17. P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu, N. Wu, K. Sui, R.R. Patil, D. Pan, Z. Guo, R. Fan, Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4, 173–185 (2021). https://doi.org/10.1007/s42114-020-00202-z

    Article  CAS  Google Scholar 

  18. X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao, D. Wang, Y. Yang, Y. Du, Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013). https://doi.org/10.1038/srep03421

    Article  Google Scholar 

  19. Z. Zhu, X. Sun, H. Xue, H. Guo, X. Fan, X. Pan, J. He, Graphene–carbonyl iron cross-linked composites with excellent electromagnetic wave absorption properties. J. Mater. Chem. C 2, 6582–6591 (2014). https://doi.org/10.1039/c4tc00757c

    Article  CAS  Google Scholar 

  20. P. Liu, S. Gao, Y. Wang, Y. Huang, W. He, W. Huang, J. Luo, Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem. Eng. J. 381, 122653 (2020). https://doi.org/10.1016/j.cej.2019.122653 (122651–122611)

    Article  CAS  Google Scholar 

  21. X. Liu, Y. Huang, L. Ding, X. Zhao, P. Liu, T. Li, Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption. J. Mater. Sci. Technol. 72, 93–103 (2021). https://doi.org/10.1016/j.jmst.2020.09.012

    Article  CAS  Google Scholar 

  22. G. Sun, H. Wu, Q. Liao, Y. Zhang, Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 11, 2689–2704 (2018). https://doi.org/10.1007/s12274-017-1899-2

    Article  CAS  Google Scholar 

  23. L. Wang, X. Yu, M. Huang, W. You, Q. Zeng, J. Zhang, X. Liu, M. Wang, R. Che, Orientation growth modulated magnetic-carbon microspheres toward broadband electromagnetic wave absorption. Carbon 172, 516–528 (2021). https://doi.org/10.1016/j.carbon.2020.09.050

    Article  CAS  Google Scholar 

  24. X. Qi, Q. Hu, H. Cai, R. Xie, Z. Bai, Y. Jiang, S. Qin, W. Zhong, Y. Du, Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties. Sci. Rep. 6, 37972 (2016). https://doi.org/10.1038/srep37972

    Article  CAS  Google Scholar 

  25. Q. Li, X. Tian, W. Yang, L. Hou, Y. Li, B. Jiang, X. Wang, Y. Li, Fabrication of porous graphene-like carbon nanosheets with rich doped-nitrogen for high-performance electromagnetic microwave absorption. Appl. Surf. Sci. 530, 147298 (2020). https://doi.org/10.1016/j.apsusc.2020.147298 (147291–147211)

    Article  CAS  Google Scholar 

  26. H. Zhang, Z. Jia, A. Feng, Z. Zhou, L. Chen, C. Zhang, X. Liu, G. Wu, In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber. Compos. B (2020). https://doi.org/10.1016/j.compositesb.2020.108261

    Article  Google Scholar 

  27. N. Rosdi, R.S. Azis, I. Ismail, N. Mokhtar, M.M. Muhammad Zulkimi, M.S. Mustaffa, Structural, microstructural, magnetic and electromagnetic absorption properties of spiraled multiwalled carbon nanotubes/barium hexaferrite (MWCNTs/BaFe12O19) hybrid. Sci. Rep. 11, 15982 (2021). https://doi.org/10.1038/s41598-021-95332-9

    Article  CAS  Google Scholar 

  28. P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C 4, 9738–9749 (2016). https://doi.org/10.1039/c6tc03518c

    Article  CAS  Google Scholar 

  29. C.A. Stergiou, M.Y. Koledintseva, K.N. Rozanov, Hybrid Polym. Compos. Mater. 2017, 53–106 (2017). https://doi.org/10.1016/b978-0-08-100785-3.00003.6

    Article  Google Scholar 

  30. Z.W. Li, Z.H. Yang, Microwave absorption properties and mechanism for hollowFe3O4nanosphere composites. J. Magn. Magn. Mater. 387, 131–138 (2015). https://doi.org/10.1016/j.jmmm.2015.03.087

    Article  CAS  Google Scholar 

  31. Z. Liu, W. Yang, R. Wu, Q. Hu, G. Qiao, S. Liu, J. Han, C. Wang, H. Du, J. Yang, A new quantitative analysis method for electromagnetic energy dissipation in microwave absorption materials. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.167332

    Article  Google Scholar 

  32. Y. Zhou, N. Wang, J. Muhammad, D. Wang, Y. Duan, X. Zhang, X. Dong, Z. Zhang, Graphene nanoflakes with optimized nitrogen doping fabricated by arc discharge as highly efficient absorbers toward microwave absorption. Carbon 148, 204–213 (2019). https://doi.org/10.1016/j.carbon.2019.03.034

    Article  CAS  Google Scholar 

  33. G. Logesh, U. Sabu, C. Srishilan, M. Rashad, A. Joseph, K.C. James Raju, M. Balasubramanian, Tunable microwave absorption performance of carbon fiber-reinforced reaction bonded silicon nitride composites. Ceram. Int. 47, 22540–22549 (2021). https://doi.org/10.1016/j.ceramint.2021.04.265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61901430) and the Science & Technology Innovation Fund of AVIC MTI (No. 911905144).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by LZ, LG, and MY. The first draft of the manuscript was written by LZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Baoshan Zhang or Guoke Wei.

Ethics declarations

Conflict of interest

The work is original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. No conflict of interest exists in the submission of this manuscript. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Gao, L., Yang, M. et al. In situ growth of nanocarbon-coated Ni particles by PECVD for enhanced microwave absorption. J Mater Sci: Mater Electron 33, 16306–16319 (2022). https://doi.org/10.1007/s10854-022-08523-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08523-z

Navigation