Skip to main content

Advertisement

Log in

Enhancement in incident photon-to-current conversion efficiency of manganese-decorated activated carbon-supported cadmium sulfide nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the current study, cadmium sulfide (CdS), activated carbon (AC)-supported CdS (CdS/AC) and manganese (Mn)-decorated CdS/AC semiconductor materials fabricated by the chemical precipitation method are used as sensitizers and the incident photon-to-current efficiency (IPCE) values of the obtained semiconductor-based solar cell structures are evaluated. The fabricated semiconductor materials, which provide the best IPCE value, are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). SEM images of the Mn-decorated CdS/AC semiconductor material showed that CdS and Mn settled in the mesopores, forming a homogeneous microporous structure on the surface. Based on the XRD, EDX and XPS analysis findings, it is concluded that CdS, CdS/AC and Mn-decorated CdS/AC semiconductor materials are successfully fabricated. The optimum concentration of CdS with a maximum IPCE (%) is found as 10% (for CdS/AC). An extraordinary increase in IPCE (%) of 3% Mn-decorated 10% CdS/AC semiconductor material (from 4.70 to 55.09%) is observed compared to pure CdS. Thus, the ability to increase the photovoltaic efficiency of CdS-based solar cells, which are widely used in photovoltaic applications, with AC support has been clearly demonstrated. The findings of this study indicates that Mn-decorated CdS/AC fabrication is an effective strategy to greatly increase the IPCE (%) and Mn-decorated CdS/AC is a promising nanocomposite to improve solar cell efficiency of semiconductor-based solar cell structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. V.T. Chebrolu, H.-J. Kim, Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. J. Mater. Chem. C 7(17), 4911–4933 (2019)

    Article  CAS  Google Scholar 

  2. W.A. Farooq, M. Atif, A. Fatehmulla, I.S. Yahia, M.S. AlSalhi, M. Fakhar-e-Alam, S.M. Ali, K. Ali, T. Munir, M.A. Manthrammel, Photovoltaic and capacitance measurements of solar cells comprise of Al-doped CdS (QD) and hierarchical flower-like TiO2 nanostructured electrode. Results in Physics 16, 102827 (2020)

    Article  Google Scholar 

  3. M. Ramya, T. Nideep, V. Nampoori, M. Kailasnath, The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study. J. Mater. Sci.: Mater. Electron. 32(3), 3167–3179 (2021)

    CAS  Google Scholar 

  4. J. Chen, W. Ouyang, W. Yang, J.H. He, X. Fang, Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv. Funct. Mater. 30(16), 1909909 (2020)

    Article  CAS  Google Scholar 

  5. A. Jamshidvand, R. Keshavarzi, V. Mirkhani, M. Moghadam, S. Tangestaninejad, I. Mohammadpoor-Baltork, N. Afzali, J. Nematollahi, M. Amini, A novel Ru (II) complex with high absorbance coefficient: efficient sensitizer for dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 32(7), 9345–9356 (2021)

    CAS  Google Scholar 

  6. A.D. Terna, E.E. Elemike, J.I. Mbonu, O.E. Osafile, R.O. Ezeani, The future of semiconductors nanoparticles: Synthesis, properties and applications. Mater. Sci. Engineering: B 272, 115363 (2021)

    Article  CAS  Google Scholar 

  7. K. Zheng, K. Žídek, M. Abdellah, W. Zhang, P. Chábera, N. Lenngren, A. Yartsev, Tn. Pullerits, Ultrafast charge transfer from CdSe quantum dots to p-type NiO: hole injection vs hole trapping. J. Phys. Chem. C 118(32), 18462–18471 (2014)

    Article  CAS  Google Scholar 

  8. S.K. Agnihotri, D. Samajdar, Z. Arefinia, Design of InP-based truncated nanopyramid solar cells with conformal coating of PEDOT: PSS for improved light harvesting efficiency. Opt. Mater. 110, 110475 (2020)

    Article  CAS  Google Scholar 

  9. A. Ekinci, Ö Şahin, S. Horoz, Chemical bath deposition of Co-doped PbS thin films for solar cell application. J. Mater. Sci.: Mater. Electron. 31(2), 1210–1215 (2020)

    CAS  Google Scholar 

  10. S. Horoz, L. Lu, Q. Dai, J. Chen, B. Yakami, J. Pikal, W. Wang, J. Tang, CdSe quantum dots synthesized by laser ablation in water and their photovoltaic applications. Appl. Phys. Lett. 101(22), 223902 (2012)

    Article  CAS  Google Scholar 

  11. F. Khodam, A.R. Amani-Ghadim, S. Aber, Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties. Sol. Energy 181, 325–332 (2019)

    Article  CAS  Google Scholar 

  12. L.J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized Ti O 2 inverse opal solar cells. Appl. Phys. Lett. 91(2), 023116 (2007)

    Article  CAS  Google Scholar 

  13. Y.L. Lee, Y.S. Lo, Highly efficient quantum-dot‐sensitized solar cell based on co‐sensitization of CdS/CdSe. Adv. Funct. Mater. 19(4), 604–609 (2009)

    Article  Google Scholar 

  14. A. Sahu, A. Garg, A. Dixit, A review on quantum dot sensitized solar cells: Past, present and future towards carrier multiplication with a possibility for higher efficiency. Sol. Energy 203, 210–239 (2020)

    Article  CAS  Google Scholar 

  15. B.G. Akinoglu, B. Tuncel, V. Badescu, Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells. Sustain. Energy Technol. Assess. 46, 101287 (2021)

    Google Scholar 

  16. C.I. Santos, S. Machado, W. Wegner, K.D. Gontijo, L.A. Bettini, J. Schiavon, M.A. Reiss, P. Aldakov, D.: Hydrothermal synthesis of aqueous-soluble copper indium sulfide nanocrystals and their use in quantum dot sensitized solar cells. Nanomaterials 10(7), 1252 (2020)

    Article  CAS  Google Scholar 

  17. C.V. Gopi, M. Venkata-Haritha, S.-K. Kim, H.-J. Kim, A strategy to improve the energy conversion efficiency and stability of quantum dot-sensitized solar cells using manganese-doped cadmium sulfide quantum dots. Dalton Trans. 44(2), 630–638 (2015)

    Article  CAS  Google Scholar 

  18. H.T. Tung, D. Van Thuan, J.H. Kiat, D.H. Phuc, Ag + ion doped on the CdSe quantum dots for quantum-dot-sensitized solar cells’ application. Appl. Phys. A 125(8), 1–9 (2019)

    Article  CAS  Google Scholar 

  19. L. Zhang, H. Rao, Z. Pan, X. Zhong, ZnSxSe1–x Alloy Passivation Layer for High-Efficiency Quantum-Dot-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 11(44), 41415–41423 (2019). doi:https://doi.org/10.1021/acsami.9b14579

    Article  CAS  Google Scholar 

  20. S. Horoz, Q. Dai, F. Maloney, B. Yakami, J. Pikal, X. Zhang, J. Wang, W. Wang, J. Tang, Absorption induced by Mn doping of ZnS for improved sensitized quantum-dot solar cells. Phys. Rev. Appl. 3(2), 024011 (2015)

    Article  CAS  Google Scholar 

  21. R. Ibrahim, A. Azab, A. Mansour, Synthesis and structural, optical, and magnetic properties of Mn-doped CdS quantum dots prepared by chemical precipitation method. J. Mater. Sci.: Mater. Electron. 32(14), 19980–19990 (2021)

    CAS  Google Scholar 

  22. P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 134(5), 2508–2511 (2012)

    Article  CAS  Google Scholar 

  23. M. Ece, A. Ekinci, S. Kutluay, Ö Şahin, S. Horoz, Facile synthesis and comprehensive characterization of Ni-decorated amine groups-immobilized Fe3O4@SiO2 magnetic nanoparticles having enhanced solar cell efficiency. J. Mater. Sci.: Mater. Electron. 32(13), 18192–18204 (2021). doi:https://doi.org/10.1007/s10854-021-06361-z

    Article  CAS  Google Scholar 

  24. S. Horoz, O. Sahin, Synthesis, characterizations and photovoltaic properties of Cr-doped CdS QDs. J. Mater. Sci.: Mater. Electron. 28(23), 17784–17790 (2017)

    CAS  Google Scholar 

  25. S. Kutluay, S. Horoz, Ö Şahin, A. Ekinci, M. Ece, Highly improved solar cell efficiency of Mn-doped amine groups‐functionalized magnetic Fe3O4@SiO2 nanomaterial. Int. J. Energy Res. 45(14), 20176–20185 (2021)

    Article  CAS  Google Scholar 

  26. U. Mehmood, M.Z. Aslam, R. Shawabkeh, I.A. Hussein, W. Ahmad, A.G. Rana, Improvement in photovoltaic performance of dye sensitized solar cell using activated carbon-TiO 2 composites-based photoanode. IEEE J. Photovolt. 6(5), 1191–1195 (2016)

    Article  Google Scholar 

  27. L. Li, X. Yang, J. Gao, H. Tian, J. Zhao, A. Hagfeldt, L. Sun, Highly Efficient CdS Quantum Dot-Sensitized Solar Cells Based on a Modified Polysulfide Electrolyte. J. Am. Chem. Soc. 133(22), 8458–8460 (2011)

    Article  CAS  Google Scholar 

  28. G.S. Paul, J.H. Kim, M.-S. Kim, K. Do, J. Ko, J.-S. Yu, Different hierarchical nanostructured carbons as counter electrodes for CdS quantum dot solar cells. ACS Appl. Mater. Interfaces 4(1), 375–381 (2012)

    Article  CAS  Google Scholar 

  29. Q. Shen, A. Yamada, S. Tamura, T. Toyoda, CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode. Appl. Phys. Lett. 97(12), 123107 (2010)

    Article  CAS  Google Scholar 

  30. Y. Gao, X. Zou, Z. Huang, Doped heterojunction used in quantum dot sensitized solar cell. Int. J. Photoenergy 2014, 179289 (2014)

    Article  CAS  Google Scholar 

  31. W. Lee, W.-C. Kwak, S.K. Min, J.-C. Lee, W.-S. Chae, Y.-M. Sung, S.-H. Han, Spectral broadening in quantum dots-sensitized photoelectrochemical solar cells based on CdSe and Mg-doped CdSe nanocrystals. Electrochem. Commun. 10(11), 1699–1702 (2008)

    Article  CAS  Google Scholar 

  32. L. Li, X. Zou, H. Zhou, G. Teng, Cu-doped-CdS/In-doped-CdS cosensitized quantum dot solar cells. J. Nanomaterials 2014, 314386 (2014)

    Google Scholar 

  33. X. Zou, S. He, G. Teng, C. Zhao, Performance study of CdS/Co-doped-CdSe quantum dot sensitized solar cells. J. Nanomaterials 2014, 818160 (2014)

    Google Scholar 

  34. N.S. Karan, D. Sarma, R. Kadam, N. Pradhan, Doping transition metal (Mn or Cu) ions in semiconductor nanocrystals. J. Phys. Chem. Lett. 1(19), 2863–2866 (2010)

    Article  CAS  Google Scholar 

  35. S. Jana, B.B. Srivastava, N. Pradhan, Correlation of dopant states and host bandgap in dual-doped semiconductor nanocrystals. J. Phys. Chem. Lett. 2(14), 1747–1752 (2011)

    Article  CAS  Google Scholar 

  36. L. Liu, M. Huang, Z. Lan, J. Wu, G. Shang, G. Liu, J. Lin, Efficient Mn-doped CdS quantum dot sensitized solar cells based on SnO2 microsphere photoelectrodes. J. Mater. Sci.: Mater. Electron. 25(2), 754–759 (2014). doi:https://doi.org/10.1007/s10854-013-1641-0

    Article  CAS  Google Scholar 

  37. F. Zhan, W. Liu, H. Li, Y. Yang, M. Wang, Ce-doped CdS quantum dot sensitized TiO2 nanorod films with enhanced visible-light photoelectrochemical properties. Appl. Surf. Sci. 455, 476–483 (2018)

    Article  CAS  Google Scholar 

  38. Q. Chen, J. Song, C. Zhou, Q. Pang, L. Zhou, Application research of CdS: Eu3 + quantum dots-sensitized TiO2 nanotube solar cells. Mater. Sci. Semiconduct. Process. 46, 53–58 (2016)

    Article  CAS  Google Scholar 

  39. S. Horoz, Synthesis of W(3%)-doped CdS thin film by SILAR and its characterization. J. Mater. Sci.: Mater. Electron. 29(9), 7519–7525 (2018). doi:https://doi.org/10.1007/s10854-018-8743-7

    Article  CAS  Google Scholar 

  40. I. Mehmood, J. Huang, S.A. Khan, A.H. Shah, Q.U. Khan, M. Kiani, D. Zhou, G. Li, Investigation of silver doped CdS co-sensitized TiO2/CISe/Ag–CdS heterostructure for improved optoelectronic properties. Opt. Mater. 111, 110645 (2021)

    Article  CAS  Google Scholar 

  41. I. Mehmood, A.H. Shah, S.A. Khan, M. Kiani, N.Z. Khan, A. Saeed, A. Ayub, F. Khan, H. Jincheng, S. Muhammad, L. Jiang, L. Guijun, S. Agathopoulos, Effect of Mg-doped CdS co-sensitization on performance of CuInSe2 quantum dot sensitized solar cells. J. Phys. Chem. Solids 162, 110502 (2022)

    Article  CAS  Google Scholar 

  42. K. Bhavsar, P. Labhane, R. Dhake, G. Sonawane, Solvothermal synthesis of activated carbon loaded CdS nanoflowers: Boosted photodegradation of dye by adsorption and photocatalysis synergy. Chem. Phys. Lett. 744, 137202 (2020)

    Article  CAS  Google Scholar 

  43. S. Kutluay, Excellent adsorptive performance of novel magnetic nano-adsorbent functionalized with 8-hydroxyquinoline-5-sulfonic acid for the removal of volatile organic compounds (BTX) vapors. Fuel 287, 119691 (2021)

    Article  CAS  Google Scholar 

  44. C. Guo, K. Tian, L. Wang, F. Liang, F. Wang, D. Chen, J. Ning, Y. Zhong, Y. Hu, Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production. J. Colloid Interface Sci. 583, 661–671 (2021)

    Article  CAS  Google Scholar 

  45. H. Tian, M. Liu, W. Zheng, Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity. Appl. Catal. B 225, 468–476 (2018)

    Article  CAS  Google Scholar 

  46. J. Kim, I. Kang, S. Kim, J. Kang, Facile synthesis of partially oxidized Mn 3 O 4-functionalized carbon cathodes for rechargeable Li–O 2 batteries. RSC Adv. 8(39), 22226–22232 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Siirt University Scientific Research Projects Coordination Unit under Project Number 2020-SİÜFEB-019.

Author information

Authors and Affiliations

Authors

Contributions

EB Investigation, visualization, writing— review. OB Investigation, review and editing. SH Conceptualization, investigation, visualization, writing-review and editing. OS Supervision, investigation and review. SK Conceptualization, supervision, investigation, visualization, writing-review and editing.

Corresponding author

Correspondence to Sinan Kutluay.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batur, E., Baytar, O., Horoz, S. et al. Enhancement in incident photon-to-current conversion efficiency of manganese-decorated activated carbon-supported cadmium sulfide nanocomposite. J Mater Sci: Mater Electron 33, 16286–16296 (2022). https://doi.org/10.1007/s10854-022-08521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08521-1

Navigation