Skip to main content
Log in

Study of the quasi-single crystalline lead sulfide film deposited by magnetron sputtering and its infrared detecting characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead sulfide (PbS) detectors have the advantages of room temperature detection, high sensitivity and wide spectral application range in short-wave infrared detection (1–3 μm). Magnetron sputtering with the advantages of few impurities and precise control of film structure, compared with other preparation of PbS thin films, is a potential method to deposit PbS thin films. Silicon-based PbS heterojunction devices provide a promising architecture for infrared detection due to their CMOS process compatibility. However, there are few reports on quasi-single crystal PbS prepared by magnetron sputter and silicon-based heterojunction infrared detector based on sputtered PbS. Herein, we investigated the preparation of PbS thin films by magnetron sputtering at room temperature, studied the effect of process parameters and post-annealing conditions on the crystalline orientation and growth mechanism of PbS thin films, analyzed the surface topography, crystal structure, crystalline size and optical characteristics of films, and obtained the quasi-crystalline (200) orientated PbS films. We designed and fabricated a p-Si/n-PbS heterojunction infrared detector based on sputtered PbS films using optimized sputtering parameters and post-annealing conditions. The p-Si/n-PbS heterojunction infrared detector exhibited a high rectification ratio up to 104, photo responsivity of 0.763 mA/W and detectivity of 6.07 × 1010 cm Hz1/2/W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

We have the original data and material with us.

References

  1. J.L. Machol, F.W. Wise, Vibronic quantum beats in PbS microcrystallites. Phys. Rev. B 48, 2819–2822 (1993)

    Article  CAS  Google Scholar 

  2. M.A. Rafea, N. Roushdy, Study of optical properties of nanostructured PbS thin films. Philos. Mag Lett. 90, 113–120 (2010)

    Article  CAS  Google Scholar 

  3. S.A. McDonald, G. Konstantatos, S. Zhang, W.C. Paul, J.D. Ethan, L. Levina, E.H. Sargent, Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138–142 (2005)

    Article  CAS  Google Scholar 

  4. K. Xu, X. Xiao, W. Zhou, X. Jiang, Q. Wei, H. Chen, Z. Deng, J. Huang, B. Chen, Z. Ning, Inverted Si:PbS colloidal quantum dot heterojunction-based infrared photodetector. ACS Appl. Mater. Interface 12, 15414–15421 (2020)

    Article  CAS  Google Scholar 

  5. Z. Zhu, Z. Liu, J. Li, G. Tai, S. Lau, F. Yan, Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012)

    Article  CAS  Google Scholar 

  6. H. Liu, M. Li, O. Voznyy, L. Hu, Q. Fu, D. Zhou, Z. Xia, E.H. Sargent, J. Tang, Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. Adv. Mater. 26, 2718–2724 (2014)

    Article  CAS  Google Scholar 

  7. A. Mosahebfard, H.D. Jahromi, M.H. Sheikhi, Highly sensitive, room temperature methane gas sensor based on lead sulfide colloidal nanocrystals. IEEE Sens. J. 16, 4174–4179 (2016)

    Article  Google Scholar 

  8. C.R.P. Greboval, J. Qu, A. Chu, J. Ramade, A. Kjalili, C. Dabard, T. Dang, H. Cruguel, A. Ouerghi, N. Witkowski, M.G. Silly, E. Lhuillier, Time-resolved photoemission to unveil electronic coupling between absorbing and transport layers in a quantum dot-based solar cell. J. Phys. Chem. C 124, 23400–23409 (2020)

    Article  CAS  Google Scholar 

  9. B. Kim, D.C.J. Neo, B. Hou, J. Park, Y. Cho, N. Zhang, J. Hong, S. Pak, S. Lee, J. Sohn, H.E. Assender, A.A.R. Watt, S. Cha, J. Kim, High performance PbS quantum dot/graphene hybrid solar cell with efficient charge extraction. ACS Appl. Mater. Interface 8, 13902–13908 (2016)

    Article  CAS  Google Scholar 

  10. S. Kumar, T.P. Sharma, M. Zulfequar, M. Husain, Characterization of vacuum evaporated PbS thin films. Phys. B: Condens Matter 325, 8–16 (2003)

    Article  CAS  Google Scholar 

  11. J. Puiso, S. Lindrros, S. Tamulecicius, M. Leskela, V. Snitka, Growth of ultra-thin films by SILAR techniques. Thin Solid Films 428, 223–226 (2003)

    Article  CAS  Google Scholar 

  12. F. Nisanci, U. Demir, Size-controlled electrochemical growth of PbS nanostructures into electrochemically patterned self-assembled monolayers. Langmuir 28, 8571–8578 (2012)

    Article  CAS  Google Scholar 

  13. J. Yang, A.V. Walker, Morphological control of PbS grown on functionalized self-assembled monolayers by chemical bath deposition. Langmuir 30, 6954–6962 (2014)

    Article  CAS  Google Scholar 

  14. L.F. Koao, F. Hone, F.B. Dejene, Synthesis and characterization of PbS nanowires doped with Tb3+ ions by using chemical bath deposition method. J. Nanostructure Chem. 10, 1–7 (2020)

    Article  CAS  Google Scholar 

  15. Z. Motlagh, M. Araghi, Effect of annealing temperature om optical and electrical properties oflead sulfide thin films. Mater. Sci. Semicond. Process. 40, 701–707 (2015)

    Article  CAS  Google Scholar 

  16. J. Filho, F. Marques, Structural and optical temperature-dependent properties of PbS thin filmsdeposited by radio frequency sputtering. Mater. Sci. Semicond. Process. 91, 188–193 (2019)

    Article  CAS  Google Scholar 

  17. J. Sharma, S. Singh, Effect of growth temperature and RF power on structural and optical properties of sputtered deposited PbS thin films. Indian J. Pure Appl. Phys. 57, 709–712 (2019)

    Google Scholar 

  18. F. Pomar, A. Cruz, J.L. Menchaca, M.F. Melendrez, E. Tijerina, Study of the structural properties of nanostructured PbS thin films deposited by RF sputtering at room temperature. Mater. Res. Express 5, 106403 (2018)

    Article  CAS  Google Scholar 

  19. S. Masala, V. Adinolfi, J. Sun, S. Gobbo, O. Voznyy, I.J. Kramer, I.G. Hill, E.H. Sargent, Thesilicon, colloidal quantum dot heterojunction. Adv. Mater. 27, 7445–7450 (2015)

    Article  CAS  Google Scholar 

  20. M. Buda, V. Stancu, G. Iordache, L. Pintilie, M. Buda, T. Botila, Investigation of nanocrystalline PbS/n-Si heterostructures for optoelectronic applications. Mater. Sci. Eng. B 147, 284–288 (2008)

    Article  CAS  Google Scholar 

  21. S. Kaci, A. Keffous, L. Guerbous, M. Trar, Preparation and room temperature photoluminescence characterization of PbS/Si(100) thin films. Thin Solid Films 520, 79–82 (2011)

    Article  CAS  Google Scholar 

  22. W. Feng, C. Qin, Y. Shen, W. Luo, H. An, Y. Feng, A layer-nanostructured assembly of PbS quantum dot/multiwalled carbon nanotube for a high-performance photoswitch. Sci. Rep. 4, 3777 (2014)

    Article  CAS  Google Scholar 

  23. H. Hosokawa, R. Tamaki, T. Sawada, A. Okonogi, H. Sato, Y. Ogomi, S. Hayase, Y. Okada, T. Yano, Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites. Nat. Commun. 10, 43 (2019)

    Article  CAS  Google Scholar 

  24. L. Meng, Y. Liu, J. Zhang, S.L.R. Bai, A. Chen, Y. Lin, Efficiency enhancement of PbS quantum dots-sensitized, nanocrystalline SnO2 thin film prepared by two-phase method. J. Solid State Electrochem. 20, 29–36 (2016)

    Article  CAS  Google Scholar 

  25. M. Benhaliliha, C.E. Benouis, M.S. Aida, F. Yakuphanoglu, A.S. Juarez, Indium and aluminium-doped ZnO thin films deposited onto FTO substrates: nanostructure, optical, photoluminescence and electrical properties. J. Sol-Gel Sci. Technol. 55, 335–342 (2010)

    Article  CAS  Google Scholar 

  26. G. Kim, W. Jeong, H. Kim, Electrical characteristics of solution-processed InGaZnO thin film transistors depending on Ga concentration. Phys. Status Solidi 207, 1677–1679 (2010)

    Article  CAS  Google Scholar 

  27. C. Zha, C. Ji, J. Zhang, L. Shen, X. Zhang, S. Dong, N. Bao, Facet engineering of monodisperse PbS nanocrystals with shape- and facet-dependent photoresponse activity. RSC Adv. 6, 107151 (2016)

    Article  CAS  Google Scholar 

  28. C. Hammond, The basics of crystallography and diffraction, 3rd edn. (Oxford University Press, Oxford, 2009)

    Google Scholar 

  29. S. Yu, H. Zheng, L. Li, S. Chen, Highly conducting and transparent antimony doped tin oxidethin films, the role of sputtering power density. Ceram. Int. 43, 5654–5660 (2017)

    Article  CAS  Google Scholar 

  30. R. Chandra, A. Chawla, D. Kaur, P. Ayyub, Structural, optical and electronic properties ofnanocrystalline TiN films. Nanotechnology 16, 3053–3056 (2005)

    Article  CAS  Google Scholar 

  31. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)

    Article  CAS  Google Scholar 

  32. J. Zhu, H. Wang, S. Xu, H. Chen, Sonochemical method for the preparation of monodispersespherical and rectangular lead selenide nanoparticles. Langmuir 18, 3306–3310 (2002)

    Article  CAS  Google Scholar 

  33. Y. Ohya, H. Saiki, Y. Takahashi, Preparation of transparent, electrically conducting ZnO film from zinc acetate and alkoxide. J. Mater. Sci. 29, 4099–4103 (1994)

    Article  CAS  Google Scholar 

  34. T. Bui, Y. Miyashita, Y. Morikage, T. Tagawa, T. Handa, Y. Mutoh, Y. Otsuka, Contribution of grain size, and crystal orientation to fatigue crack deflection and branching behavior in low carbon steel plates. ISIJ Int. 61, 424–433 (2021)

    Article  CAS  Google Scholar 

  35. P.W. Page, L.B. Hazell, X-ray photoelectron spectroscopy (XPS) studies of potassium amyl xanthate (KAX) adsorption on precipitated PbS related to galena flotation. Int. J. Miner Process. 25, 87–100 (1989)

    Article  CAS  Google Scholar 

  36. D.J.H. Cant, K.L. Syres, P.J.B. Lunt, H. Radtke, J. Treacy, P. Thomas, E.A. Lewis, S.J. Haigh, P. Brien, K. Schulte, F. Bondino, E. Magnano, W. Flavell, Surface properties of nanocrystalline PbS films deposited at the water-oil interfaces: a study of atmospheric aging. Langmuir 31, 1445–1453 (2015)

    Article  CAS  Google Scholar 

  37. M. Jeong, A. Sanger, S. Kang, Y. Jung, I. Oh, J. Yoo, G. Kim, K. Choi, Increasing the thermoelectric power factor of solvent-treated PEDOT: PBS thin films on PDMS by stretching. J. Mater. Chem. A 6, 15621–15629 (2018)

    Article  CAS  Google Scholar 

  38. J. Embden, K. Latham, N.W. Duffy, Y. Tachibana, Near-infrared absorbing Cu12Sb4S13 and Cu3SbS4 nanocrystals: synthesis, characterization, and photo-electrochemistry. J. Am. Chem. Soc. 135, 11562011571 (2013)

    Google Scholar 

  39. K. Qiao, Y. Cao, X. Yang, J. Khan, H. Deng, J. Zhang, U. Farooq, S. Yuan, H. Song, Efficient interface and bulk passivation of PbS quantum dot infrared photodetectors by PbI2 incorporation. RSC Adv. 7, 52947 (2017)

    Article  CAS  Google Scholar 

  40. T. Rauch, M. Boberl, S.F. Tedde, J. Furst, M.V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayde, Near-infrared imaging with quantum-dot-sensitized organic photodiodes. Nat. Photonics 3, 332–336 (2009)

    Article  CAS  Google Scholar 

  41. O.L. Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol 8, 497–501 (2013)

    Article  CAS  Google Scholar 

  42. D. Yeon, S. Lee, Y. Jo, J. Moon, Y. Cho, Origin of the enhanced photovoltaic characteristics of PbS thin film solar cells processed at near room temperature. J. Mater. Chem. A 2, 20112–20117 (2014)

    Article  CAS  Google Scholar 

  43. W. Liao, Y. Huang, H. Wang, H. Zhang, Van der Waals heterostructures for optoelectronics: progress and prospects. Appl. Mater. Today 16, 435–455 (2019)

    Article  Google Scholar 

  44. Y. Xu, G. Li, R. Li, Y. Jing, H. Zhang, X. Wang, Z. Du, J. Wu, Z. Lan, PbS/CdS heterojunction thin layer affords high-performance carbon-based all-inorganic solar cells. Nano Energy 95, 106973 (2022)

    Article  CAS  Google Scholar 

  45. J. Xiao, M. Qi, Y. Cheng, A. Jiang, Y. Zeng, J. Ma, Influences of nitrogen partial pressure on the optical properties of copper nitride films. RSC Adv. 6, 40895–40899 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thank Dr. Yishuo Hu for a useful discussion of film growth and Dr. Wenzhao Wang for a helpful discussion of crystal orientation. The authors thank the Dr. Zhu of the Flexible Electronics Manufacturing Laboratory in Experiment Center for Advanced Manufacturing and Dr. Yan of the Technology in School of Mechanical Science & Engineering of HUST for carrying out the thermal evaporation, and the Analytical and Testing Center of HUST for providing XPS, UV and AFM measurements. The authors also acknowledge Dr. Zhang for the facility support of the Center for Nanoscale Characterization & Devices (CNCD), WNLO of HUST.

Ethics declarations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, analysis and manuscript writing were performed by Yonghong Xiao. Tingwei Xu and Maofa Zhang also performed the material preparation. Duo chen measured the XRD and AFM measurements. Yufei Zhou helped designing the devices. Xiaoqing Bao helped the Hall measurement. Xiangbin Zeng supervised the design of experiments and the writing of manuscript. And all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiangbin Zeng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the research work reported in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3523.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Xu, T., Zhang, M. et al. Study of the quasi-single crystalline lead sulfide film deposited by magnetron sputtering and its infrared detecting characteristics. J Mater Sci: Mater Electron 33, 16029–16044 (2022). https://doi.org/10.1007/s10854-022-08494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08494-1

Navigation