Skip to main content
Log in

Bias-dependent photo-detection of dual-ion beam sputtered MgZnO thin films

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The structural, morphological, elemental and electrical properties of MgZnO thin films, grown on p-Si (001) substrates by dual-ion beam sputtering deposition (DIBSD) system at different substrate temperatures were thoroughly investigated. X-ray diffraction (XRD) pattern of MgZnO film exhibited crystalline hexagonal wurtzite structure with the preferred (002) crystal orientation. The full-width at half-maximum of the (002) plane was the narrowest with a value of 0.226° from MgZnO film grown at 400°C. X-ray photoelectron spectroscopy analysis confirmed the substitution of Zn2+ by Mg2+ in MgZnO thin films and the absence of MgO phase. Correlation between calculated crystallite size, as evaluated from XRD measurements, and room-temperature carrier mobility, as obtained from Hall measurements, was established. Current–voltage characteristics of MgZnO thin films were carried out under the influence of dark and light illumination conditions and corresponding values of photosensitivity were calculated. MgZnO film grown at 100°C exhibited the highest photosensitivity of 1.62. Compared with one of the best-reported values of photosensitivity factor from ZnO-material-based films available in the literature, briefly, 3.085-fold improved photosensitivity factor at the same bias voltage (2 V) was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Liao M and Koide Y 2006 Appl. Phys. Lett. 89 113509

    Article  Google Scholar 

  2. Moon T H, Jeong M C, Lee W and Myoung J M 2005 Appl. Surf. Sci. 240 280

    Article  Google Scholar 

  3. Look D C 2001 Mater., Sci. Eng. B 80 383

    Article  Google Scholar 

  4. Polyakov A Y, Smirnov N B, Kozhukhova E A, Vdovin V I, Ip K, Heo Y W, Norton D P and Pearton S J 2003 Appl. Phys. Lett. 83 1575

    Article  Google Scholar 

  5. Theodoropoulou N A, Hebard A F, Norton D P, Budai J D, Boatner L A, Lee J S, Khim Z G, Park Y D, Overberg M E, Pearton S J and Wilson R G 2003 Solid-State Electron. 47 2231

    Article  Google Scholar 

  6. Kim H S, Pearton S J, Norton D P and Ren F 2008 Appl. Phys. A 91 2

    Google Scholar 

  7. Heo Y W, Tien L C, Norton D P, Kang B S, Ren F, Gila B P and Pearton S J 2004 Appl. Phys. Lett. 85 2002

    Article  Google Scholar 

  8. Kwon Y, Li Y, Heo Y W, Jones M, Holloway P H, Norton D P, Park Z V and Li S 2004 Appl. Phys. Lett. 84 2685

    Article  Google Scholar 

  9. Tuzemen S, Gur E, Yildirım T, Xiong G and Williams R T 2006 J. Appl. Phys. 100 103513

    Article  Google Scholar 

  10. Studenikin S A, Golego N and Cocivera M 2000 J. Appl. Phys. 87 2413

    Article  Google Scholar 

  11. Sharma P, Mansingh A and Sreenivas K 2002 Appl. Phys. Lett. 80 553

    Article  Google Scholar 

  12. Yang W, Hullavarad S S, Nagaraj B, Takeuchi I, Sharma R P, Venkatesan T, Vispute R D and Shen H 2003 Appl. Phys. Lett. 82 3424

    Article  Google Scholar 

  13. Ohtomo A, Kawasaki M, Koida T, Masubuchi K and Koinuma H 1998 Appl. Phys. Lett. 72 2466

    Article  Google Scholar 

  14. Pandey S K, Pandey S K and Mukherjee S 2013 Proceeding of the 5th IEEE international nanoelectronics conference (INEC, Singapore)

  15. Liang M H, Ho Y T, Wang W L, Peng C Y and Li C 2008 J. Cryst. Growth 310 1847

    Article  Google Scholar 

  16. Lu Y M, Wu C X, Wei Z P, Zhang Z Z, Zhao D X and Zhang J Y 2005 J. Cryst. Growth 278 299

    Article  Google Scholar 

  17. Park W I, Yi G and Jang H M 2001 Appl. Phys. Lett. 79 2022

    Article  Google Scholar 

  18. Liu W, Gu S L, Zhu S M, Ye J D, Qin F, Liu S M et al 2005, J. Appl. Phys. 277 416

    Google Scholar 

  19. Minemoto T, Negami T, Nishiwaki S, Takakura H and Hamakawa Y 2000 Thin Solid Films 372 173

    Article  Google Scholar 

  20. Choi C H and Kim S H 2005 J. Cryst. Growth 283 170

    Article  Google Scholar 

  21. Kar J P, Jeong M C, Lee W K and Myoung J M 2008 Mater. Sci. Eng. B 147 74

    Article  Google Scholar 

  22. Pandey S K, Pandey S K, Mukherjee C, Mishra P, Gupta M, Barman S R, D’Souza S W and Mukherjee S 2013 J. Mater. Sci.: Mater. Electron. 24 2541

    Google Scholar 

  23. Pandey S K, Pandey S K, Deshpande U P, Awasthi V, Kumar A, Gupta M and Mukherjee S 2013 Semicond. Sci. Technol. 28 085014

    Article  Google Scholar 

  24. American Standard for Testing of Materials—ASTM 36-1451

  25. Asharfi A B and Segawa Y 2005 J. Vac. Sci. Technol. B 23 5

    Google Scholar 

  26. Kumar R, Khare N, Kumar V and Bhalla G L 2008 Appl. Surf. Sci. 254 20

    Google Scholar 

  27. Cullity B D 1978 Elements of X-ray diffraction (Reading: Addison-Wesley) 2nd ed, p 102

  28. Park S M, Gu G H and Park C G 2011 Phys. Status Solidi A 208 2688

    Article  Google Scholar 

  29. Lee C Y, Tseng T Y, Li S Y and Lin P 2006 J. Appl. Phys. 99 024303

    Article  Google Scholar 

  30. Rao Kumar M C S, Safarulla A, Ganesan V, Barman S R and Sanjeeviraja C 2010 Physica B 405 2226

  31. Islam M N, Ghosh T B, Chopra K L and Acharya H N 1996 Thin Solid Films 280 20

    Article  Google Scholar 

  32. Fan H B, Yang S Y, Zhang P F, Wei H Y, Liu X L, Jiao C M, Zhu Q S, Chen Y H and Wang Z G 2007 Chinese Phys. Lett. 24 2108

    Article  Google Scholar 

  33. Kim H S, Lugo F, Pearton S J and Norton D P 2008 J. Vac. Sci. Technol. B 26 960

    Google Scholar 

  34. Liu C Y, Xu H Y, Wang L, Li X H and Liu Y C 2009 J. Appl. Phys. 106 073518

    Article  Google Scholar 

  35. Ilican S, Caglar Y and Caglar M 2008 J. Optoelectron. Adv. Mater. 10 10

    Google Scholar 

  36. Caglar Y, Caglar M, Ilican S and Ates A 2009 J. Phys. D: Appl. Phys. 42 065421

    Article  Google Scholar 

  37. George P J, Sanchez-Juarez A and Nair P K 1996 Semicond. Sci. Technol. 11 1090

    Article  Google Scholar 

  38. Zhou H, Fang G, Liu N and Zhao X 2011 Nanoscale Res. Lett. 6 147

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Department of Science and Technology (DST) Fast Track Scheme for Young Scientist No. SR/FTP/ETA-101/2010. This work was also supported by DST Science and Engineering Research Board (SERB) project number SR/S3/EECE/0142/2011 and Council of Scientific and Industrial Research (CSIR) project number 22(0608)/12/EMR-II. We are also grateful for the Atomic Force Microscopy (AFM) Facility equipped at Sophisticated Instrument Centre (SIC), IIT Indore. We also express gratitude to Dr Mukul Gupta, UGC-DAE CSR, Indore, for XRD measurement of samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SAURABH KUMAR PANDEY.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PANDEY, S.K., MUKHERJEE, S. Bias-dependent photo-detection of dual-ion beam sputtered MgZnO thin films. Bull Mater Sci 39, 307–313 (2016). https://doi.org/10.1007/s12034-015-1131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-015-1131-5

Keywords

Navigation