Skip to main content
Log in

Flash sintering preparation and colossal dielectric origin of (Al0.5Ta0.5)0.05Ti0.95O2 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, (Al, Ta) co-doped TiO2 (ATTO) ceramics were successfully prepared by flash sintering method under different electric fields (450–650 V/cm). The effects of electric field on flash sintering behavior, phase structure, microstructure, dielectric properties and varistor properties of ATTO ceramics were systematically studied. The results showed that all flash sintering ATTO ceramics were single rutile structure. With increasing electric field, grain size gradually increased. When the electric field was 550 V/cm, ATTO ceramic had the best comprehensive performance with dielectric constant of approximately 1.7 × 104, dielectric loss of about 0.5 at 1 kHz, and nonlinear coefficient of 3.5. X-ray photoelectron spectroscopy (XPS) and Impedance spectra (IS) results showed that the origin of good dielectric property was attributed to the internal barrier layer capacitance effect. Therefore, this work is not only of great significance to the further study of co-doped TiO2 colossal dielectric ceramics, but also offers an excellent method for the preparation of capacitive varistor dual-function ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Wang, W. Jie, C. Yang, X. Wei, J. Hao, Colossal permittivity materials as superior dielectrics for diverse applications. Adv. Funct. Mater. 29, 1808118 (2019)

    Article  CAS  Google Scholar 

  2. W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J.W. Leung, Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 12, 821–826 (2013)

    Article  CAS  Google Scholar 

  3. S. Krohns, P. Lunkenheimer, S. Meissner, A. Reller, B. Gleich, A. Rathgeber, T. Gaugler, H.U. Buhl, D.C. Sinclair, A. Loidl, The route to resource-efficient novel materials. Nat. Mater 10, 899–901 (2011)

    Article  CAS  Google Scholar 

  4. A. Nfissi, Y. Ababou, M. Belhajji, S. Sayouri, L. Hajji, M.N. Bennani, Investigation of Ba and Ti sites occupation effects on structural, optical and dielectric properties of sol gel processed Y-doped BaTiO3 ceramics. Opt. Mater. 122, 111708 (2021)

    Article  CAS  Google Scholar 

  5. S.G. Fritsch, Z.V. Nava, C. Tenailleau, T. Lebey, B. Durand, J.Y. Ching, Colossal permittivity in ultrafine grain size BaTiO3–x and Ba0.95La0.05TiO3–x materials. Adv. Mater. 20, 551–555 (2008)

    Article  CAS  Google Scholar 

  6. J. Wu, C.W. Nan, Y. Lin, Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO. Phys. Rev. Lett. 89, 217601 (2002)

    Article  CAS  Google Scholar 

  7. J. Boonlakhorn, N. Chanlek, J. Manyam, P. Srepusharawoot, S. Krongsuk, P. Thongbai, Enhanced giant dielectric properties and improved nonlinear electrical response in acceptor-donor (Al3+, Ta5+)-substituted CaCu3Ti4O12 ceramics. J. Adv. Ceram. 10, 1243–1255 (2021)

    Article  CAS  Google Scholar 

  8. X. Shan, L. Zhang, X. Yang, Z.Y. Cheng, Dielectric composites with a high and temperature-independent dielectric constant. J. Adv. Ceram. 1, 310–316 (2013)

    Article  CAS  Google Scholar 

  9. T. Yan, K. Chen, C. Li, M. Liu, J. Wang, L. Fang, L. Liu, Structure evolution, dielectric, and conductivity behavior of (K0.5Na0.5)NbO3-Bi(Zn2/3Nb1/3)O3 ceramics. J. Adv. Ceram. 10, 809–819 (2021)

    Article  CAS  Google Scholar 

  10. J. Li, Y. Zeng, Y. Fang, N. Chen, G. Du, A. Zhang, Synthesis of (La + Nb) co-doped TiO2 rutile nanoparticles and dielectric properties of their derived ceramics composed of submicron-sized grains. Ceram. Int. 47, 8859–8867 (2020)

    Article  CAS  Google Scholar 

  11. B. Hu, K. Sun, J. Wang, J. Xu, B. Liu, J. Zhang, Y. Yang, B. Du, High dielectric performance of (Nb5+, Lu3+) co-doped TiO2 ceramics in a broad temperature range. Mater. Lett. 271, 127838 (2020)

    Article  CAS  Google Scholar 

  12. Z. Cao, J. Zhao, J. Fan, G. Li, H. Zhang, Colossal permittivity of (Gd + Nb) co-doped TiO2 ceramics induced by interface effects and defect cluster. Ceram. Int. 47, 6711–6719 (2021)

    Article  CAS  Google Scholar 

  13. W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Very low dielectric loss and giant dielectric response with excellent temperature stability of Ga3+ and Ta5+ co-doped rutile-TiO2 ceramics. Mater. Des. 123, 15–23 (2017)

    Article  CAS  Google Scholar 

  14. T. Nachaithong, P. Kidkhunthod, P. Thongbai, S. Maensiri, Surface barrier layer effect in (In + Nb) co-doped TiO2 ceramics: an alternative route to design low dielectric loss. J. Am. Ceram. Soc. 100, 1452–1459 (2017)

    Article  CAS  Google Scholar 

  15. X. Zhao, P. Liu, Y. Song, A. Zhang, X. Chen, J. Zhou, Origin of colossal permittivity in (In1/2Nb1/2)TiO2 via broadband dielectric spectroscopy. Phys. Chem. Chem. Phys. 17, 23132 (2015)

    Article  CAS  Google Scholar 

  16. Z. Xu, L. Li, W. Wang, T. Lu, Colossal permittivity and ultralow dielectric loss in (Nd0.5Ta0.5)xTi1-xO2 ceramics. Ceram. Int. 45, 17318–17324 (2019)

    Article  CAS  Google Scholar 

  17. N. Thongyong, P. Srepusharawoot, W. Tuichai, N. Chanlek, V. Amornkitbamrung, P. Thongbai, Electronic structure of colossal permittivity (Mg1/3Nb2/3)0.05Ti0.95O2 ceramics. Ceram. Int. 44, S145–S147 (2018)

    Article  CAS  Google Scholar 

  18. H. Peng, B. Shang, X. Wang, Z. Peng, X. Chao, P. Liang, Z. Yang, Origin of giant permittivity in Ta, Al co-doped TiO2: surface layer and internal barrier capacitance layer effects. Ceram. Int. 44, 5768–5773 (2018)

    Article  CAS  Google Scholar 

  19. J. Zhao, B. Wang, K. Lu, Influence of Ta2O5 doping and microwave sintering on TiO2-based varistor properties. Ceram. Int. 40, 14229–14234 (2014)

    Article  CAS  Google Scholar 

  20. J. Li, S. Yang, J. Liu, Y. Zhuang, Y. Tian, Q. Hu, Z. Xu, L. Wang, F. Li, Colossal dielectric behavior of co-doped TiO2 ceramics: a comparative study. J. Alloys Compd. 786, 377–384 (2019)

    Article  CAS  Google Scholar 

  21. M. Cologna, B. Rashkova, R. Raj, Flash sintering of nanograin zirconia in <5 s at 850 °C. J. Am. Ceram. Soc. 93, 3556–3559 (2010)

    Article  CAS  Google Scholar 

  22. H. Charalambous, S.K. Jha, K.H. Christian, R.T. Lay, T. Tsakalakos, Flash sintering using controlled current ramp. J. Eur. Ceram. Soc. 38, 3689–3693 (2018)

    Article  CAS  Google Scholar 

  23. B. Yang, X.L. Phuah, Z. Shang, X. Sheng, H. Wang, X. Zhang, Effects of incubation on microstructure gradient in flash-sintered TiO2. Scr. Mater. 207, 114270 (2022). https://doi.org/10.1016/j.scriptamat.2021.114270

    Article  CAS  Google Scholar 

  24. D. Liu, J. Liu, Y. Gao, F. Liu, K. Li, J. Xia, Y. Wang, L. An, Effect of the applied electric field on the microstructure and electrical properties of flash-sintered 3YSZ ceramics. Ceram. Int. 42, 19066–19070 (2016)

    Article  CAS  Google Scholar 

  25. J.S.C. Francis, R. Raj, J. Halloran, Influence of the field and the current limit on flash sintering at isothermal furnace temperatures. J. Am. Ceram. Soc. 96, 2754–2758 (2013)

    Article  CAS  Google Scholar 

  26. L. Guan, J. Li, X. Song, J. Bao, T. Jiang, Graphite assisted flash sintering of Sm2O3 doped CeO2 ceramics at the onset temperature of 25 °C. Scr. Mater. 159, 72–75 (2019)

    Article  CAS  Google Scholar 

  27. S.K. Jha, R. Raj, I.W. Chen, The effect of electric field on sintering and electrical conductivity of titania. J. Am. Ceram. Soc. 97, 527–534 (2014)

    Article  CAS  Google Scholar 

  28. Z. Wang, P. Peng, L. Zhang, N. Wang, B. Tang, B. Cui, J. Liu, D. Xu, Effect of electric field on the microstructure and electrical properties of (In + Ta) co-doped TiO2 colossal dielectric ceramics. J. Mater. Sci.: Mater. Electron. 33, 6283–6293 (2022)

    CAS  Google Scholar 

  29. P. Peng, C. Chen, B. Cui, J. Li, D. Xu, B. Tang, Influence of the electric field on flash-sintered (Zr + Ta) co-doped TiO2 colossal permittivity ceramics. Ceram. Int. 48, 6016–6023 (2022)

    Article  CAS  Google Scholar 

  30. Y. Song, P. Liu, W. Wu, Q. Zhou, High-performance colossal permittivity for textured (Al+Nb) co-doped TiO2 ceramics sintered in nitrogen atmosphere. J. Eur. Ceram. Soc. 41, 4146–4152 (2021)

    Article  CAS  Google Scholar 

  31. Y. Song, X. Zhang, X. Qi, Z. Liu, L. Zhang, Y. Zhang, Y. Wang, Y. Sui, B. Song, Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature. Appl. Phys. Lett. 109, 142903 (2016)

    Article  CAS  Google Scholar 

  32. W. Dong, W. Hu, T.J. Frankcombe, D. Chen, C. Zhou, Z. Fu, L. Cândido, G. Hai, H. Chen, Y. Li, R.L. Withers, Y. Liu, Colossal permittivity with ultralow dielectric loss in In + Ta co-doped rutile TiO2. J. Mater. Chem. A 5, 5436–5441 (2017)

    Article  CAS  Google Scholar 

  33. W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, Nonlinear current-voltage and giant dielectric properties of Al3+ and Ta5+ co-doped TiO2 ceramics. Mater. Res. Bull. 116, 137–142 (2019)

    Article  CAS  Google Scholar 

  34. R. Raj, Joule heating during flash-sintering. J. Eur. Ceram. Soc. 32, 2293–2301 (2012)

    Article  CAS  Google Scholar 

  35. Y. Zhang, J. Nie, J.M. Chan, J. Luo, Probing the densification mechanisms during flash sintering of ZnO. Acta Mater. 125, 465–475 (2017)

    Article  CAS  Google Scholar 

  36. J. Liu, L. Wang, X. Yin, Q. Yu, D. Xu, Effect of ionic radius on colossal permittivity properties of (A, Ta) co-doped TiO2 (A= alkaline-earth ions) ceramics. Ceram. Int. 46, 12059–12066 (2020)

    Article  CAS  Google Scholar 

  37. Z. Wang, Y. Li, H. Chen, J. Fan, X. Wang, X. Ma, Correlation between the radius of acceptor ion and the dielectric properties of co-doped TiO2 ceramics. Ceram. Int. 45, 14625–14633 (2019)

    Article  CAS  Google Scholar 

  38. Y. Zhang, J.I. Jung, J. Luo, Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO–Bi2O3 under direct currents. Acta Mater. 94, 87–100 (2015)

    Article  CAS  Google Scholar 

  39. M. Jongmanns, D.E. Wolf, Element-specific displacements in defect-enriched TiO2: indication of a flash sintering mechanism. J. Am. Ceram. Soc. 103, 589–596 (2019)

    Article  CAS  Google Scholar 

  40. J. Liu, J. Xu, B. Cui, Q. Yu, S. Zhong, L. Zhang, S. Du, D. Xu, Colossal permittivity characteristics and mechanism of (Sr, Ta) co-doped TiO2 ceramics. J. Mater. Sci. Mater. Electron. 31, 5205–5213 (2020)

    Article  CAS  Google Scholar 

  41. T. Nachaithong, W. Tuichai, P. Kidkhunthod, N. Chanlek, P. Thongbai, S. Maensiri, Preparation, characterization, and giant dielectric permittivity of (Y3+ and Nb5+ ) co-doped TiO2 ceramics. J. Eur. Ceram. Soc. 37, 3521–3526 (2017)

    Article  CAS  Google Scholar 

  42. X. Zhao, L. Chen, X. Zhang, P. Liu, C. Xu, Z. Hou, Z. Wang, F. Wang, J. Wang, G. Shi, The abnormal multiple dielectric relaxation responses of Al3+ and Nb5+ co-doped rutile TiO2 ceramics. J. Alloys Compd. 860, 157891 (2021)

    Article  CAS  Google Scholar 

  43. J. Fan, T. Yang, Z. Cao, Colossal permittivity and multiple effects in (Zn + Ta) codoped TiO2 ceramics. J. Asian Ceram. 8, 1188–1196 (2020)

    Article  Google Scholar 

  44. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J.P. Gonjal, M. Li, D.C. Sinclair, Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    Article  CAS  Google Scholar 

  45. G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao, Colossal permittivity and impedance analysis of niobium and aluminum co-doped TiO2 ceramics. RSC Adv. 6, 48708 (2016)

    Article  CAS  Google Scholar 

  46. X.W. Wang, B.H. Zhang, L.Y. Sun, W.N. Qiao, Y.D. Hao, Y.C. Hu, X.E. Wang, Colossal dielectric properties in (Ta0.5Al0.5)xTi1−xO2 ceramics. J. Alloys Compd. 745, 856–862 (2018)

    Article  CAS  Google Scholar 

  47. X. Wang, B. Liang, Y. Zheng, S. Li, Y. Liang, Y. Sun, Y. Li, Y. Shi, B. Zhang, S. Shang, J. Shang, Y. Hu, S. Yin, Colossal dielectric properties in (TaxSm1-x)0.04Ti0.96O2. Physica B 598, 412426 (2020)

    Article  CAS  Google Scholar 

  48. J. Li, F. Li, Y. Zhuang, L. Jin, L. Wang, X. Wei, Z. Xu, S. Zhang, Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics. J. Appl. Phys. 116, 074105 (2014)

    Article  CAS  Google Scholar 

  49. J. Niu, H. She, Z. Liu, M. Cheng, J. Xu, J. Liu, G. Chen, B. Tang, D. Xu, A current-controlled flash sintering processing leading to dense and fine-grained typical multi-element ZnO varistor ceramics. J. Alloys Compd. 876, 1–7 (2021)

    Article  CAS  Google Scholar 

  50. P. Peng, Y. Deng, J. Niu, L. Shi, Y. Mei, S. Du, J. Liu, D. Xu, Fabrication and electrical characteristics of flash-sintered SiO2-doped ZnO-Bi2O3-MnO2 varistors. J. Adv. Ceram. 9, 683–692 (2020)

    Article  CAS  Google Scholar 

  51. J. Li, F. Li, Z. Xu, Y. Zhuang, S. Zhang, Nonlinear I-V behavior in colossal permittivity ceramic:(Nb+In)co-doped rutile TiO2. Ceram. Int. 41, S798–S803 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant Nos. 52072004, 51802003, and 51572113) and Development Program of Anhui Province (No. 2022i01020008) and State Key Laboratory of Advanced Materials and Electronic Components (No. FHR-JS-202011006).

Author information

Authors and Affiliations

Authors

Contributions

ZW: conceptualization, methodology, investigation, preparation, experiment, writing. MS: draft visualization, experiment, analyzing writing. JL: supervision, data curation. JL: supervision. LZ, ZC, JQ, YJ: investigation. BT: conceptualization. DX: guiding. All authors read the paper and commented on the text.

Corresponding author

Correspondence to Dong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shi, M., Liu, J. et al. Flash sintering preparation and colossal dielectric origin of (Al0.5Ta0.5)0.05Ti0.95O2 ceramics. J Mater Sci: Mater Electron 33, 15802–15813 (2022). https://doi.org/10.1007/s10854-022-08482-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08482-5

Navigation