Skip to main content
Log in

Influence of the electric field and annealing temperature on flash-sintered (Mg1/3Nb2/3)0.05Ti0.95O2 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Mg, Nb) co-doped TiO2 colossal dielectric ceramics were successfully prepared at 1200 °C for 24 min. The effects of different electric field on phase structure, microstructure and dielectric properties have been systematically studied. All the flash sintered samples were pure rutile TiO2 structure, and no second phase was produced. With the increase of electric field, the dielectric constant (at 1 kHz) firstly increases and then decreases. When the electric field is 550 V/cm, the dielectric properties (ε′ ≈ 6.0 × 105, tanδ ≈ 0.73) of the ceramic sample are the best. Flash sintered samples were annealed at different temperatures (800–1000 °C) in order to reduce dielectric loss. As the annealing temperature increases, the dielectric constant decreases gradually. When the annealing temperature is 800 °C, the dielectric constant of the ceramic sample is about 7.1 × 104 and the dielectric loss is about 0.37 (twice reduced) at 1 kHz. Impedance spectroscopy (IS) data indicated that ceramics consist of semi-conductive grains and insulated grain boundaries. This good dielectric property was attributed to the internal barrier layer capacitance (IBLC) effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M. Cologna, B. Rashkova, R. Raj, J. Am. Ceram. Soc. 93, 3556–3559 (2010)

    Article  CAS  Google Scholar 

  2. B. Yang, J. Cho, X. Phuah, H. Wang, X. Zhang, J. Am. Ceram. Soc. 104, 3828–3832 (2021)

    Article  CAS  Google Scholar 

  3. F. Zhu, X. Peng, J. Liu, D. Liu, K. Ren, Y. Wang, Ceram. Int. 47, 2884–2887 (2021)

    Article  CAS  Google Scholar 

  4. A. Prettea, M. Colognab, V. Sglavoa, R. Raj, J. Power Sources. 196, 2061–2065 (2011)

    Article  Google Scholar 

  5. Y. Mei, S. Pandey, W. Long, J. Liu, S. Zhong, L. Zhang, S. Du, D. Xu, J. Eur. Ceram. Soc. 40, 1330–1337 (2020)

    Article  CAS  Google Scholar 

  6. B. Cui, J. Niu, P. Peng, L. Shi, S. Du, J. Liu, D. Xu, Ceram. Int. 46, 14913–14918 (2020)

    Article  CAS  Google Scholar 

  7. Z. Wang, T. Li, J. Li, F. Zhao, R. Zuo, L. Zhang, Z. Cheng, D. Xu, Ceram. Int. 49, 18525–18533 (2023)

    Article  CAS  Google Scholar 

  8. Z. Wang, P. Peng, L. Zhang, N. Wang, B. Tang, B. Cui, J. Liu, D. Xu, J. Mater. Sci. : Mater. Electron. 33, 6283–6293 (2022)

    CAS  Google Scholar 

  9. D. Liu, Y. Gao, J. Liu, F. Liu, K. Li, H. Su, Y. Wang, L. An, Scr. Mater. 114, 108–111 (2016)

    Article  CAS  Google Scholar 

  10. E. Bichaud, J. Chaix, C. Carry, M. Kleitz, M. Steil, J. Eur. Ceram. Soc. 35, 2587–2592 (2015)

    Article  CAS  Google Scholar 

  11. Y. Zhang, J. Jung, J. Luo, Acta Mater. 94, 87–100 (2015)

    Article  CAS  Google Scholar 

  12. T. Holland, U. Tamburini, D. Quach, T. Tran, A. Mukherjee, J. Eur. Ceram. Soc. 32, 3667–3674 (2012)

    Article  CAS  Google Scholar 

  13. K. Naik, V. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34, 4063–4067 (2014)

    Article  CAS  Google Scholar 

  14. K. Ren, Q. Wang, Y. Lian, Y. Wang, J. Alloys Compd. 747, 1073–1077 (2018)

    Article  CAS  Google Scholar 

  15. S. Fritsch, Z. Nava, C. Tenailleau, T. Lebey, B. Durand, J. Ching, Adv. Mater. 20, 551–555 (2008)

    Article  Google Scholar 

  16. R. Schmidt, M. Stennett, N. Hyatt, J. Pokorny, J. Gonjal, M. Li, D. Sinclair, J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    Article  CAS  Google Scholar 

  17. J. Boonlakhorn, N. Chanlek, J. Manyam, P. Srepusharawoot, S. Krongsuk, P. Thongbai, J. Adv. Ceram. 10, 1243–1255 (2021)

    Article  CAS  Google Scholar 

  18. W. Hu, Y. Liu, R. Withers, T. Frankcombe, L. Noren, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Leung, Nat. Mater. 12, 821–826 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. T. Li, R. Si, J. Sun, S. Wang, J. Wang, R. Ahmed, G. Zhu, C. Wang, Sens. Actuators B 293, 151–158 (2019)

    Article  CAS  Google Scholar 

  20. C. Yang, M. Tse, X. Wei, J. Hao, J. Mater. Chem. C 5, 5170–5175 (2017)

    Article  CAS  Google Scholar 

  21. W. Hu, K. Lau, Y. Liu, R. Withers, H. Chen, L. Fu, B. Gong, W. Hutchison, Chem. Mater. 27, 4934–4942 (2015)

    Article  CAS  Google Scholar 

  22. C. Yang, X. Wei, J. Hao, J. Am. Ceram. Soc. 101, 307–315 (2018)

    Article  CAS  Google Scholar 

  23. L. Li, T. Lu, N. Zhang, J. Li, Z. Cai, J. Mater. Chem. C 6, 2283–2294 (2018)

    Article  CAS  Google Scholar 

  24. W. Dong, W. Hu, T. Frankcombe, D. Chen, C. Zhou, Z. Fu, L. Cândido, G. Hai, H. Chen, Y. Li, R. Withers, Y. Liu, J. Mater. Chem. A 5, 5436–5441 (2017)

    Article  CAS  Google Scholar 

  25. Z. Wang, L. Zhang, J. Liu, Z. Jiang, L. Zhang, Y. Jiu, T. Bin, D. Xu, ECS J. Solid State Sci. Technol. 11, 093002 (2022)

    Article  CAS  Google Scholar 

  26. J. Liu, J. Xu, B. Cui, Q. Yu, S. Zhong, L. Zhang, S. Du, D. Xu, J. Mater. Sci. : Mater. Electron. 31, 5205–5213 (2020)

    CAS  Google Scholar 

  27. B. Yang, Z. Shang, J. Li, X. Phuah, J. Cho, H. Wang, X. Zhang, J. Eur. Ceram. Soc. 42, 6040–6047 (2022)

    Article  CAS  Google Scholar 

  28. S. Jha, R. Raj, I. Chen, J. Am. Ceram. Soc. 97, 527–534 (2014)

    Article  CAS  Google Scholar 

  29. Z. Yang, P. Wang, Z. Wang, J. Liu, L. Zhang, S. Zhong, B. Tang, D. Xu, Ceram. Int. 48, 24629–24637 (2022)

    Article  CAS  Google Scholar 

  30. Z. Wang, M. Shi, J. Liu, J. Li, L. Zhang, Z. Cheng, J. Qin, Y. Jiu, B. Tang, D. Xu, J. Mater. Sci. : Mater. Electron. 33, 15802–15813 (2022)

    CAS  Google Scholar 

  31. P. Peng, C. Chen, B. Cui, J. Li, D. Xu, B. Tang, Ceram. Int. 48, 6016–6023 (2022)

    Article  CAS  Google Scholar 

  32. Z. Wang, P. Peng, S. Zhong, Y. Cheng, D. Xu, Microelectron. Int. 39, 194–202 (2022)

    Article  CAS  Google Scholar 

  33. R. Raj, J. Eur. Ceram. Soc. 32, 2293–2301 (2012)

    Article  CAS  Google Scholar 

  34. M. Jongmanns, D. Wolf, J. Am. Ceram. Soc. 103, 589–596 (2019)

    Article  Google Scholar 

  35. Y. Wu, X. Zhao, J. Zhang, W. Su, J. Liu, Appl. Phys. Lett. 107, 242904 (2015)

    Article  Google Scholar 

  36. Y. Yu, Y. Zhao, T. Zhang, R. Song, Y. Zhang, Y. Qiao, W. Li, W. Fei, Ceram. Int. 44, 6866–6871 (2018)

    Article  CAS  Google Scholar 

  37. Z. Wang, H. Zheng, L. Zhang, Z. Cheng, F. Zhao, R. Zuo, T. Li, D. Xu, ECS J. Solid State Sci. Technol. 12, 023010 (2023)

    Article  Google Scholar 

  38. G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao, RSC Adv. 6, 48708–48714 (2016)

    Article  CAS  Google Scholar 

  39. X. Wang, B. Zhang, L. Sun, W. Qiao, Y. Hao, Y. Hu, X. Wang, J. Alloys Compd. 745, 856–862 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Key Scientific Research Project of University in Anhui Province (2023AH040124) and Key Research and Development and Achievement Transformation Project of Science and Technology Projects in Wuhu City (2023yf032).

Author information

Authors and Affiliations

Authors

Contributions

HM: Methodology, Design, Investigation, Preparation, Writing. XW: Experiment, Investigation. CL: Experiment, Analyzing. ZW: Investigation, Preparation, Writing. LZ: Analyzing, Data curation. CZ: Experiment, Analyzing. DX: Conceptualization, Guiding, Review, Supervision. All authors read the paper and commented on the text.

Corresponding author

Correspondence to Dong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, H., Wang, X., Liu, C. et al. Influence of the electric field and annealing temperature on flash-sintered (Mg1/3Nb2/3)0.05Ti0.95O2 ceramics. J Mater Sci: Mater Electron 35, 875 (2024). https://doi.org/10.1007/s10854-024-12656-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12656-8

Navigation