Skip to main content
Log in

Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We studied the effect of microstructural deformation on soft magnetic metal powders in a power inductor operating above 1 MHz. In this study, an inductor core was fabricated using Fe-6.5Si powders that exhibit a high electrical resistance and a large magnetic saturation value. This core was formed with a high-density microstructure using nano Fe powders synthesized via pulsed wire evaporation. The permeability was maximized at the content ratio for which the maximum density and packing fraction were observed according to the relationship between permeability and packing fraction outlined in Ollendorff’s equation. Experimentally, the highest packing fraction and permeability were observed in the core containing 20 wt% nano Fe powder. Further, the sample with the highest packing fraction showed a relatively low core loss, compared to the other samples. Thus, the inductor core is affected by the intrinsic properties and microstructure of the soft magnetic material used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. A. Goldman, Metal Powder Cores for Telecommunications Applications, Handbook of Modern Ferromagnetic Materials, Springer US, Boston, MA, 1999: pp. 183–205. https://doi.org/10.1007/978-1-4615-4917-8_10

    Chapter  Google Scholar 

  2. J.M. Silveyra, E. Ferrara, D.L. Huber, T.C. Monson, Soft magnetic materials for a sustainable and electrified world. Science 362, 2018 (1979). https://doi.org/10.1126/science.aao0195

    Article  CAS  Google Scholar 

  3. L.O. Hultman, A.G. Jack (2003) Soft magnetic composites-materials and applications, in: IEEE International Electric Machines and Drives Conference. IEMDC’03., IEEE,   https://doi.org/10.1109/IEMDC.2003.1211312

  4. I.P. Gilbert, V. Moorthy, S.J. Bull, J.T. Evans, A.G. Jack, Development of soft magnetic composites for low-loss applications. J. Magn. Magn. Mater. (2002). https://doi.org/10.1016/S0304-8853(01)01252-5

    Article  Google Scholar 

  5. A.W. Lotfi, M.A. Wilkowski, Issues and advances in high-frequency magnetics for switching power supplies. Proc. IEEE. 89, 833–845 (2001). https://doi.org/10.1109/5.931473

    Article  Google Scholar 

  6. M.S. Rylko, B.J. Lyons, J.G. Hayes, M.G. Egan, Revised Magnetics Performance Factors and Experimental Comparison of High-Flux Materials for High-Current DC–DC Inductors. IEEE Trans. Power Electron. 26, 2112–2126 (2011). https://doi.org/10.1109/TPEL.2010.2103573

    Article  Google Scholar 

  7. S. Kh. Gheisari, H. Javadpour, B. Shokrollahi, Hashemi, Magnetic losses of the soft magnetic composites consisting of iron and Ni–Zn ferrite. J. Magnetism Magn. Mater. 320, 1544–1548 (2008). https://doi.org/10.1016/j.jmmm.2008.01.005

    Article  CAS  Google Scholar 

  8. A.K.M.A. Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, Structural, electrical transport, and magnetic properties of Ni1 – xZnxFe2O4. J. Magnetism Magn. Mater. 312, 210–219 (2007). https://doi.org/10.1016/j.jmmm.2006.09.030

    Article  CAS  Google Scholar 

  9. J.H. Paterson, R. Devine, A.D.R. Phelps, Complex permeability of soft magnetic ferrite/polyester resin composites at frequencies above 1MHz. J. Magn. Magn. Mater. 196, 394–396 (1999). https://doi.org/10.1016/S0304-8853(98)00772-0

    Article  Google Scholar 

  10. T. Suetsuna, S. Suenaga, K. Harada, Bulk nanogranular composite of magnetic metal and insulating oxide matrix. Scripta Mater. 113, 89–92 (2016). https://doi.org/10.1016/j.scriptamat.2015.10.013

    Article  CAS  Google Scholar 

  11. D.H. Kim, J.G. Yeo, Y.J. Choi, S.H. Lee, S.Y. An, J.Y. Kim, B.W. Lee, Magnetic properties of amorphous metallic composites with various particle sizes. J. Korean Phys. Soc. 79, 1037–1041 (2021). https://doi.org/10.1007/s40042-021-00309-6

    Article  CAS  Google Scholar 

  12. H.J. Woo, J.H. Ahn, C.P. Kim, D.H. Choi, S. Kim, B.W. Lee, Effect of the particle size classification of FeSiCrB amorphous soft magnetic composites to improve magnetic properties of power inductors. J. Non-cryst. Solids (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121309

    Article  Google Scholar 

  13. K. Ackland, A. Masood, S. Kulkarni, P. Stamenov, Ultra-soft magnetic Co-Fe-B-Si-Nb amorphous alloys for high frequency power applications. AIP Adv. (2018). https://doi.org/10.1063/1.5007707

    Article  Google Scholar 

  14. H.R. Lashgari, D. Chu, S. Xie, H. Sun, M. Ferry, S. Li, Composition dependence of the microstructure and soft magnetic properties of Fe-based amorphous/nanocrystalline alloys: A review study. J. Non-Crystalline Solids 391, 61–82 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.03.010

    Article  CAS  Google Scholar 

  15. H. Shokrollahi, K. Janghorban, Soft magnetic composite materials (SMCs). J. Mater. Process. Technol. 189, 1–12 (2007). https://doi.org/10.1016/j.jmatprotec.2007.02.034

    Article  CAS  Google Scholar 

  16. R. Guo, S. Wang, Z. Yu, K. Sun, X. Jiang, G. Wu, C. Wu, Z. Lan, FeSiCr@NiZn SMCs with ultra-low core losses, high resistivity for high frequency applications. J. Alloys Compd. 830, 154736 (2020). https://doi.org/10.1016/j.jallcom.2020.154736

    Article  CAS  Google Scholar 

  17. W. Nie, T. Yu, Z. Wang, X. Wei, High-performance core-shell-type FeSiCr@MnZn soft magnetic composites for high-frequency applications. J. Alloys Compd. 864, 158215 (2021). https://doi.org/10.1016/j.jallcom.2020.158215

    Article  CAS  Google Scholar 

  18. H. Yu, S. Zhou, G. Zhang, B. Dong, L. Meng, Z. Li, Y. Dong, X. Cao, The phosphating effect on the properties of FeSiCr alloy powder. J. Magnetism Magn. Mater. 552, 168741 (2022). https://doi.org/10.1016/j.jmmm.2021.168741

    Article  CAS  Google Scholar 

  19. F. Luo, X. Fan, Z. Luo, W. Hu, J. Wang, Z. Wu, G. Li, Y. Li, X. Liu, Preparation and magnetic properties of FeSiAl-based soft magnetic composites with MnO/Al2O3 insulation layer. J. Magnetism Magn. Mater. 498, 166084 (2020). https://doi.org/10.1016/j.jmmm.2019.166084

    Article  CAS  Google Scholar 

  20. J. Wang, S. Song, H. Sun, Z. Xue, Improvement of magnetic properties for FeSi/FeSiAl compound soft magnetic composites by introducing impact of powder size matching. J. Mater. Science: Mater. Electron. 32, 8545–8556 (2021). https://doi.org/10.1007/s10854-021-05488-3

    Article  CAS  Google Scholar 

  21. H. Li, H. Yang, Z. Li, Z. Li, X. Liu, Multifunctional FeSiAl Soft Magnetic Composites with Inorganic–Organic Hybrid Insulating Layers for High Mechanical Strength, Low Core Loss and Comprehensive Anti-Corrosion. J. Electron. Mater. (2022). https://doi.org/10.1007/s11664-022-09602-x

    Article  Google Scholar 

  22. S. Zhu, Z. Wang, X. Kan, S. Feng, X. Liu, FeNi/Glass Soft Magnetic Composites with High Magnetic Properties. J. Supercond. Novel Magn. (2022). https://doi.org/10.1007/s10948-022-06166-z

    Article  Google Scholar 

  23. X. Yao, P. Lu, Y. Tian, G.-Q. Lu, Y. Mei, A 200 °C curable soft magnetic composite with high permeability and low core loss for power applications at >1 MHz. J. Mag. Magnetic Mater. 535, 168061 (2021). https://doi.org/10.1016/j.jmmm.2021.168061

  24. H.J. Woo, J.H. Ahn, C.P. Kim, D.H. Choi, S. Kim, B.W. Lee, Effect of the particle size classification of FeSiCrB amorphous soft magnetic composites to improve magnetic properties of power inductors. J. Non-Crystalline Solids 577, 121309 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121309

    Article  CAS  Google Scholar 

  25. C. Wang, J.H. Liu, X.L. Peng, J. Li, Y.T. Yang, Y.B. Han, J.C. Xu, B. Hong, J. Gong, H.L. Ge, X.Q. Wang, FeSiCrB amorphous soft magnetic composites filled with Co2Z hexaferrites for enhanced effective permeability. Adv. Powder Technol. 33, 103378 (2022). https://doi.org/10.1016/j.apt.2021.11.030

    Article  CAS  Google Scholar 

  26. D.H. Kim, J.-G. Yeo, Y.J. Choi, S.H. Lee, S.Y. An, J.Y. Kim, B.W. Lee, Magnetic properties of amorphous metallic composites with various particle sizes. J. Korean Phys. Soc. (2021). https://doi.org/10.1007/s40042-021-00309-6

    Article  Google Scholar 

  27. J.G. Yeo, D.H. Kim, Y.J. Choi, B.W. Lee, Improving Power-Inductor Performance by Mixing Sub-micro Fe Powder with Amorphous Soft Magnetic Composites. J. Electron. Mater. 48, 6018–6023 (2019). https://doi.org/10.1007/s11664-019-07381-6

    Article  CAS  Google Scholar 

  28. B.v. Velamakanni, F.F. Lange, Effect of Interparticle Potentials and Sedimentation on Particle Packing Density of Bimodal Particle Distributions During Pressure Filtration. J. Am. Ceramic Soc. 74, 166–172 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb07313.x

    Article  CAS  Google Scholar 

  29. H.Y. Sohn, C. Moreland, The effect of particle size distribution on packing density. Can. J. Chem. Eng. 46, 162–167 (1968). https://doi.org/10.1002/cjce.5450460305

    Article  Google Scholar 

  30. R. Nowosielski, J.J. Wysłocki, I. Wnuk, P. Gramatyka, Nanocrystalline soft magnetic composite cores. J. Mater. Process. Technol. 175, 324–329 (2006). https://doi.org/10.1016/j.jmatprotec.2005.04.017

    Article  CAS  Google Scholar 

  31. Y.J. Choi, J.H. Ahn, S.W. Kim, Y.R. Kim, B.W. Lee, Improvement in power inductor performance at 3MHz by mixing carbonyl iron powder with Fe–Si–Cr crystalline alloy. MRS Communications (2021). https://doi.org/10.1557/s43579-021-00055-7

    Article  Google Scholar 

  32. G. Ouyang, X. Chen, Y. Liang, C. Macziewski, J. Cui, Review of Fe-6.5 wt%Si high silicon steel—A promising soft magnetic material for sub-kHz application. J. Magnetism Magn. Mater. 481, 234–250 (2019). https://doi.org/10.1016/j.jmmm.2019.02.089

    Article  CAS  Google Scholar 

  33. N.R. Overman, X. Jiang, R.K. Kukkadapu, T. Clark, T.J. Roosendaal, G. Coffey, J.E. Shield, S.N. Mathaudhu, Physical and electrical properties of melt-spun Fe-Si (3–8 wt.%) soft magnetic ribbons. Mater. Charact. 136, 212–220 (2018). https://doi.org/10.1016/j.matchar.2017.12.019

    Article  CAS  Google Scholar 

  34. K.I. Arai, K. Ishiyama, Recent developments of new soft magnetic materials. J. Magnetism Magn. Mater. 133, 233–237 (1994). https://doi.org/10.1016/0304-8853(94)90534-7

    Article  CAS  Google Scholar 

  35. Y. Sato, T. Sato, Y. Okazaki, Production and properties of melt-spun Fe-6.5wt.%Si ribbons. Mater. Sci. Eng. 99, 73–76 (1988). https://doi.org/10.1016/0025-5416(88)90295-9

    Article  CAS  Google Scholar 

  36. M.F. Littmann, Iron, S.-I. Alloys, IEEE Trans. Magnetics 7, 48–60 (1971). https://doi.org/10.1109/TMAG.1971.1066998

    Article  CAS  Google Scholar 

  37. H. Suematsu, Y. Hayashi, N.D. Hieu, T.M.D. Do, T. NAKAYAMA, Preparation of iron nanosized powder by pulsed wire discharge. Jpn. J. Appl. Phys. (2021). https://doi.org/10.35848/1347-4065/ac2625

    Article  Google Scholar 

  38. K. Weihua Jiang, Yatsui, Pulsed wire discharge for nanosize powder synthesis. IEEE Trans. Plasma Sci. 26, 1498–1501 (1998). https://doi.org/10.1109/27.736045

    Article  Google Scholar 

  39. F. Yılmaz, D.-J. Lee, J.-W. Song, H.-S. Hong, H.-T. Son, J.-S. Yoon, S.-J. Hong, Fabrication of cobalt nano-particles by pulsed wire evaporation method in nitrogen atmosphere. Powder Technol. 235, 1047–1052 (2013). https://doi.org/10.1016/j.powtec.2012.10.024

    Article  CAS  Google Scholar 

  40. H.M. Lee, Y.R. Uhm, C.K. Rhee, Phase control and characterization of Fe and Fe-oxide nanocrystals synthesized by pulsed wire evaporation method. J. Alloys Compd. 461, 604–607 (2008). https://doi.org/10.1016/j.jallcom.2007.07.075

    Article  CAS  Google Scholar 

  41. Y.-W. Kim, H.S. Park, Microstructural and Magnetic Characterization of Iron Oxide Nanoparticles Fabricated by Pulsed Wire Evaporation. Electron. Mater. Lett. 15, 665–672 (2019). https://doi.org/10.1007/s13391-019-00164-5

    Article  CAS  Google Scholar 

  42. D.H. Kim, B.W. Lee, Microstructural and magnetic characterization of fe nanosized powder synthesized by pulsed wire evaporation. J. Magnetics 22, 100–103 (2017). https://doi.org/10.4283/JMAG.2017.22.1.100

    Article  CAS  Google Scholar 

  43. M.S. Ryłko, K.J. Hartnett, J.G. Hayes, M.G. Egan, Magnetic material selection for high power high frequency inductors in DC-DC converters, in: Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2009: pp. 2043–2049. https://doi.org/10.1109/APEC.2009.4802955

  44. F. Ollendorff, M. Massekerne, Archiv Für Elektrotechnik. 25, 436–447 (1931). https://doi.org/10.1007/BF01656937

    Article  Google Scholar 

  45. Y. Ito, H. Igarashi, M. Suzuki, Y. Iwasaki, K. Kawano, Effect of magnetic contact on macroscopic permeability of soft magnetic composite. IEEE Transac. Magnet.. 52, 1–4 (2016). https://doi.org/10.1109/TMAG.2015.2489227

    Article  CAS  Google Scholar 

  46. A. Maruo, H. Igarashi, Analysis of Magnetic Properties of Soft Magnetic Composite Using Discrete Element Method. IEEE Trans. Magnetics 55, 1–5 (2019). https://doi.org/10.1109/TMAG.2019.2900287

    Article  Google Scholar 

  47. M. Anhalt, B. Weidenfeller, J.L. Mattei, Inner demagnetization factor in polymer-bonded soft magnetic composites. J. Magnetism Magn. Mater. (2008). https://doi.org/10.1016/j.jmmm.2008.04.061

    Article  Google Scholar 

  48. Y. Guo, J.G. Zhu, J. Zhong, H. Lu, J.X. Jin, Measurement and modeling of rotational core losses of soft magnetic materials used in electrical machines: A review. IEEE Trans. Magnetics 44, 279–291 (2008). https://doi.org/10.1109/TMAG.2007.911250

    Article  Google Scholar 

  49. Y. Liu, Y. Yi, W. Shao, Y. Shao, Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys. J. Magnetism Magn. Mater. 330, 119–133 (2013). https://doi.org/10.1016/j.jmmm.2012.10.043

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Materials, Components & Equipments Research Program funded by the Gyeonggi Province (AICT-003-T1).

Author information

Authors and Affiliations

Authors

Contributions

MYL contributed toward methodology, preparation and writing of the original draft, and data curation. YJC contributed toward methodology, writing, reviewing, and editing of the manuscript. SHL contributed toward conceptualization, data analysis, preparation and writing of the original draft, data curation, and visualization. JHA contributed toward methodology, writing, reviewing, and editing of the manuscript. BWL contributed toward project administration, funding acquisition, and supervision.

Corresponding author

Correspondence to Bo Wha Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

We confirm that our manuscripts comply with ethical standards, and we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Research data policy

Our manuscript supports the Type 3 Research Data Policy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Choi, Y., Lee, S. et al. Controlling properties of metal–polymer soft magnetic composites through microstructural deformation for power inductor applications. J Mater Sci: Mater Electron 33, 15763–15772 (2022). https://doi.org/10.1007/s10854-022-08478-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08478-1

Navigation