Skip to main content
Log in

Temperature-dependent photoluminescence of thin tetraphenylporphyrin-based thin films and their composites with C60 fullerene

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The investigation of the temperature effect on optical properties of porphyrins has tremendous impact for modern organic-based photonics and nanoelectronics. We performed temperature-dependent photoluminescence spectroscopy study of H2TPP, ZnTPP tetraphenylporphyrin-based thin films and their composites with C60 fullerene in the range of 77–370 K. The films under study were deposited by vacuum evaporation technique under quasi-equilibrium condition. We experimentally observed a monotonic temperature quenching for H2TPP and H2TPP-C60 films, and abnormal increase of luminescence intensity for ZnTPP and its composite at heating from 77 to 175 K. We suggest that this nonmonotonic behavior is associated with a charge carriers capture on the non-radiative-trapped centers. Further, we have estimated traps activation energy by the Arrhenius equation. Our results carry great importance in view of the widespread research on porphyrins with aim of their future industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data are available at the corresponding author and can be presented for reasonable requests.

References

  1. Z. Kamal, M. Zarei Ghobadi, S.M. Mohseni, H. Ghourchian, High-performance porphyrin-like graphene quantum dots for immuno-sensing of Salmonella typhi. Biosens. Bioelectron. 188, 113334 (2021). https://doi.org/10.1016/J.BIOS.2021.113334

    Article  CAS  Google Scholar 

  2. A. El-Denglawey, H.A. Alburaih, M.M. Mostafa, M.S. Adam, M. Dongol, M.M. El-Nahass, M.T. Alotaibi, M.M. Makhlouf, Dependence of new environmental nano organic semiconductor nickel-(II)-tetraphenyl-21H,23H-porphyrin films on substrate type for energy storage applications. Int. J. Environ. Sci. Technol. 18, 393–400 (2021). https://doi.org/10.1007/S13762-020-02829-3/FIGURES/9

    Article  CAS  Google Scholar 

  3. T. Yamamoto, J. Hatano, T. Nakagawa, S. Yamaguchi, Y. Matsuo, Small molecule solution-processed bulk heterojunction solar cells with inverted structure using porphyrin donor. Appl. Phys. Lett. 102, 013305 (2013). https://doi.org/10.1063/1.4773910

    Article  CAS  Google Scholar 

  4. Z. Cui, J. Zhou, T. Liu, Y. Wang, Y. Hu, Y. Wang, Z. Zou, Porphyrin-containing polyimide with enhanced light absorption and photocatalysis activity. Chem. Asian J. 14, 2138–2148 (2019). https://doi.org/10.1002/ASIA.201900261

    Article  CAS  Google Scholar 

  5. R.T. Kuznetsova, E.G. Ermolina, R.M. Gadirov, G.V. Mayer, N.N. Semenishin, N.V. Rusakova, Y.V. Korovin, Luminescence of metal complexes of chelate-substituted tetraphenylporphyrin. High Energy Chem. 44, 134–138 (2010). https://doi.org/10.1134/S0018143910020098

    Article  CAS  Google Scholar 

  6. S.A. Tovstun, E.G. Martyanova, S.B. Brichkin, M.G. Spirin, V.Y. Gak, A.V. Kozlov, V.F. Razumov, Förster electronic excitation energy transfer upon adsorption of meso-tetra(3-pyridyl)porphyrin on InP@ZnS colloidal quantum dots. J. Lumin. 200, 151–157 (2018). https://doi.org/10.1016/J.JLUMIN.2018.04.018

    Article  CAS  Google Scholar 

  7. X.L. Zhang, J.W. Jiang, Y.T. Liu, S.T. Lou, C.L. Gao, Q.Y. Jin, Identifying the assembly configuration and fluorescence spectra of nanoscale zinc-tetraphenylporphyrin aggregates with scanning tunneling microscopy. Sci. Rep. (2016). https://doi.org/10.1038/srep22756

    Article  Google Scholar 

  8. C. Brückner, P.C.D. Foss, J.O. Sullivan, R. Pelto, M. Zeller, R.R. Birge, G. Crundwell, Origin of the bathochromically shifted optical spectra of meso -tetrathien-2′- and 3′-ylporphyrins as compared to meso -tetraphenylporphyrin. Phys. Chem. Chem. Phys. 8, 2402–2412 (2006). https://doi.org/10.1039/B600010J

    Article  Google Scholar 

  9. M. Suzuki, K. Nakata, R. Kuroda, T. Kobayashi, E. Tokunaga, Electrooptic Kerr effect of porphyrin H-aggregates in polymer films: polymer specific spectral blue shift. Chem. Phys. 469–470, 88–96 (2016). https://doi.org/10.1016/J.CHEMPHYS.2016.02.002

    Article  Google Scholar 

  10. J.M. Frank, S.I. Vavilov, Sphere of action of the extinction phenomena in fluorescent liquids. J. Phys. 69, 100–110 (1931)

    CAS  Google Scholar 

  11. S.V. Nikiforov, V.S. Kortov, M.G. Kazantseva, K.A. Petrovykh, Luminescent properties of monoclinic zirconium oxide. J. Lumin. 166, 111–116 (2015). https://doi.org/10.1016/J.JLUMIN.2015.05.021

    Article  CAS  Google Scholar 

  12. M. Onodera, K. Sueyoshi, M. Umetsu, Fluorescence quenching by complex of a DNA aptamer and porphyrin for sensitive detection of porphyrins by capillary electrophoresis. Chem. Lett. 50, 949–952 (2021). https://doi.org/10.1246/CL.200729

    Article  CAS  Google Scholar 

  13. R.N. Bera, Y. Sakakibara, M. Tokumoto, Concentration quenching of a red emitting electroluminescent dye tetraphenylporphyrin: a time-resolved photoluminescence study. J. Mater. Sci. Mater. Electron. 16, 549–552 (2005). https://doi.org/10.1007/S10854-005-2731-4

    Article  CAS  Google Scholar 

  14. M.Z. Ongun, Enhancement of the O2 sensitivity: ZnO, CuO, and ZnO/CuO hybrid additives’ effect on meso-tetraphenylporphyrin dye. J. Turk. Chem. Soc. Sect. A Chem. 9, 479–494 (2022). https://doi.org/10.18596/JOTCSA.1031613

    Article  CAS  Google Scholar 

  15. J. Morgado, F. Cacialli, R. Iqbal, S.C. Moratti, A.B. Holmes, G. Yahioglu, L.R. Milgrom, R.H. Friend, Förster energy transfer and control of the luminescence in blends of an orange-emitting poly(p-phenylenevinylene) and a red-emitting tetraphenylporphyrin. J. Mater. Chem. 11, 278–283 (2001). https://doi.org/10.1039/B005478J

    Article  CAS  Google Scholar 

  16. O.A. Dmitrieva, N.Z. Mamardashvili, Porphyrin dimer as efficient optical thermometer: experimental and computational evaluation of the barrier to torsional rotation. J. Lumin. 235, 117986 (2021). https://doi.org/10.1016/J.JLUMIN.2021.117986

    Article  CAS  Google Scholar 

  17. V. Nurhayati, Suendo, A.A. Nugroho, A. Alni, Temperature-dependent photoluminescence of H2TPP and ZnTPP thin films on Si substrates. IOP Conf. Ser. Mater. Sci. Eng. 858, 012036 (2020). https://doi.org/10.1088/1757-899X/858/1/012036

    Article  Google Scholar 

  18. M.A. Elistratova, I.B. Zakharova, G.V. Li, R.M. Dubrovin, O.M. Sreseli, The effect of crystallization conditions on the spectral characteristics of tetraphenylporphyrin thin films. Semiconductors (2019). https://doi.org/10.1134/S1063782619010056

    Article  Google Scholar 

  19. M.A. Elistratova, I.B. Zakharova, Kvyatkovskii, Self-organization features of tetraphenylporphyrins according to quantum chemical calculations. Macroheterocycles. 12, 370–374 (2019). https://doi.org/10.6060/mhc190552e

    Article  CAS  Google Scholar 

  20. A. Harriman, Luminescence of porphyrins and metalloporphyrins. Part 1.—zinc(II), nickel(II) and manganese(II) porphyrins. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 76, 1978–1985 (1980). https://doi.org/10.1039/F19807601978

    Article  CAS  Google Scholar 

  21. J.A. O’Brien, S. Rallabandi, U. Tripathy, M.F. Paige, R.P. Steer, Efficient S2 state production in ZnTPP-PMMA thin films by triplet-triplet annihilation: evidence of solute aggregation in photon upconversion systems. Chem. Phys. Lett. 475, 220–222 (2009). https://doi.org/10.1016/j.cplett.2009.05.039

    Article  CAS  Google Scholar 

  22. V. Nurhayati, Suendo, A. Alni, A.A. Nugroho, Y. Majima, S. Lee, Y.P. Nugraha, H. Uekusa, Revealing the real size of a porphyrin molecule with quantum confinement probing via temperature-dependent photoluminescence spectroscopy. J. Phys. Chem. A 124, 2672–2682 (2020). https://doi.org/10.1021/ACS.JPCA.0C00665

    Article  Google Scholar 

  23. Q. Li, S.J. Xu, M.H. Xie, S.Y. Tong, Origin of the ‘S-shaped’ temperature dependence of luminescent peaks fromsemiconductors. J. Phys. Condens. Matter 17, 4853 (2005). https://doi.org/10.1088/0953-8984/17/30/011

    Article  CAS  Google Scholar 

  24. Y.C. Cheng, E.C. Lin, C.M. Wu, C.C. Yang, J.R. Yang, A. Rosenauer, K.J. Ma, S.C. Shi, L.C. Chen, C.C. Pan, J.I. Chyi, Nanostructures and carrier localization behaviors of green-luminescence InGaN/GaN quantum-well structures of various silicon-doping conditions. Appl. Phys. Lett. 84, 2506 (2004). https://doi.org/10.1063/1.1690872

    Article  CAS  Google Scholar 

  25. N.J. Silvernail, M.M. Olmstead, B.C. Noll, W.R. Scheidt, Tetragonal to triclinic—a phase change for [Fe(TPP)(NO)]. Inorg. Chem. 48, 971–977 (2009). https://doi.org/10.1021/IC801617Q

    Article  CAS  Google Scholar 

  26. T. Mano, R. Nötzel, Q. Gong, Tv. Lippen, G.J. Hamhuis, T.J. Eijkemans, J.H. Wolter, Temperature-dependent photoluminescence of self-assembled (In,Ga)As quantum dots on GaAs (100): carrier redistribution through low-energy continuous states. Jpn. J. Appl. Phys. 44, 6829 (2005). https://doi.org/10.1143/JJAP.44.6829

    Article  CAS  Google Scholar 

  27. A.K. Kadashchuk, N.I. Ostapenko, Y.A. Skryshevskii, V.I. Sugakov, T.O. Susokolova, Clusters of dipole charge-carrier capture centers in organic crystals. Mol. Cryst. Liq. Cryst. 201, 167–175 (1991). https://doi.org/10.1080/00268949108038646

    Article  CAS  Google Scholar 

  28. Y.J. Onofre, S. de Castro, M.P.F. de Godoy, Effect of traps localization in ZnO thin films by photoluminescence spectroscopy. Mater. Lett. 188, 37–40 (2017). https://doi.org/10.1016/J.MATLET.2016.10.081

    Article  CAS  Google Scholar 

  29. B. Chon, J. Bang, J. Park, C. Jeong, J.H. Choi, J.B. Lee, T. Joo, S. Kim, Unique temperature dependence and blinking behavior of CdTe/CdSe (core/shell) Type-II quantum dots. J. Phys. Chem. C 115, 436–442 (2010). https://doi.org/10.1021/JP109229U

    Article  Google Scholar 

  30. P.J. Walsh, K.C. Gordon, D.L. Officer, W.M. Campbell, A DFT study of the optical properties of substituted Zn(II)TPP complexes. J. Mol. Struct. THEOCHEM 759, 17–24 (2006). https://doi.org/10.1016/j.theochem.2005.10.049

    Article  CAS  Google Scholar 

  31. E.V. Shah, V. Kumar, B.K. Sharma, K. Rajput, V.P. Chaudhary, D.R. Roy, Co-tetraphenylporphyrin (co-TPP) in TM-TPP (TM = Fe, Co, Ni, Cu, and Zn) series: a new optical material under DFT. J. Mol. Model. 24, 1–7 (2018). https://doi.org/10.1007/s00894-018-3783-8

    Article  CAS  Google Scholar 

  32. N.M. Romanov, I.B. Zakharova, The composition and the structure of thin films based on metal porphyrin complexes. St. Petersbg. Polytech. Univ. J. Phys. Math. 2, 71–77 (2016)

    Google Scholar 

  33. O.E. Kvyatkovskii, E.G. Donenko, I.B. Zakharova, Electronic structure and optical properties of charge-transfer fullerene‐porphyrin complexes: ab initio calculations. Fuller. Nanotub. Carbon Nanostruct. 16, 530–533 (2008). https://doi.org/10.1080/15363830802286160

    Article  CAS  Google Scholar 

  34. M.A. Elistratova, M.O. Koroleva, I.B. Zakharova, Fluorescence quenching of tetraphenylporphyrin-fullerene molecular complexes. Springer Proc. Phys. 255, 247–253 (2021). https://doi.org/10.1007/978-3-030-58868-7_28

    Article  CAS  Google Scholar 

  35. M. Ghosh, S. Nath, A. Hajra, S. Sinha, Fluorescence self-quenching of tetraphenylporphyrin in liquid medium. J. Lumin. 141, 87–92 (2013). https://doi.org/10.1016/j.jlumin.2013.03.025

    Article  CAS  Google Scholar 

  36. T. Rudalevige, A.H. Francis, R. Zand, Spectroscopic studies of fullerene aggregates. J. Phys. Chem. A 102, 9797–9802 (1998). https://doi.org/10.1021/JP9832591

    Article  CAS  Google Scholar 

Download references

Funding

This work was not supported by any fundings.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution to the study.

Corresponding author

Correspondence to M. A. Elistratova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elistratova, M.A., Zakharova, I.B. Temperature-dependent photoluminescence of thin tetraphenylporphyrin-based thin films and their composites with C60 fullerene. J Mater Sci: Mater Electron 33, 15554–15562 (2022). https://doi.org/10.1007/s10854-022-08461-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08461-w

Navigation