Skip to main content

Advertisement

Log in

Thermal annealing impact on structural, optical and dispersion parameters of zinc tetrapyridylporphyrin as a potential absorber thin film for energy conversion and storage devices

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Thermally evaporated of zinc 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine (ZnTPyP) organic thin films have been successfully prepared and investigated. X-ray diffraction patterns of fresh grown and annealed ZnTPyP thin films have been performed. Spectra of transmission (T) and reflection (R) have been measured and have been used to establish optical constants and relevant dielectric variables. The absorption spectrum of pristine and annealed ZnTPyP films shows the most intense band called Soret band (B) which reveals Davydov splitting into two peaks Bx and By. Furthermore, two quasi-electronic bands named Q-bands and another weaker band labelled N have been observed at UV–visible spectral region. To derive several dispersion parameters of the studied ZnTPyP films, a single oscillator theory is implemented to the normal behaviour portion of the n-spectra whereas K-spectra is used to deduce the coefficient of absorption and the optical gap energies. Many optical aspects have also been discussed, such as dielectric constants, optical conductivity and energy loss functions (SELF and VELF). Optical constants, dispersion parameters and energy loss functions of ZnTPyP thin films have shifted with the thermal annealing range up to 523 K, which could be considered in design the energy conversion and storage devices based on ZnTPyP thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Baumann, A.E., Burns, D.A., Liu, B., Thoi, V.S.: Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun. Chem. 2, 86–99 (2019)

    Google Scholar 

  • Chen, Z., Gao, P., Wang, W., Klyatskaya, S., Zhao-Karger, Z., Wang, D., Kübel, C., Fuhr, O., Fichtner, M., Ruben, M.: A lithium-free energy-storage device based on an alkyne-substituted-porphyrin complex. Chemsuschem 12, 3737–3741 (2019)

    Google Scholar 

  • Davydov, A.S.: Theory of Molecular Excitons. Plenumpress, NewYork (1971)

    Google Scholar 

  • El-Nahass, M.M.: Optical properties of tin diselenide films. J. Mater. Sci. 27, 6597–6604 (1992)

    ADS  Google Scholar 

  • El-Nahass, M.M., El-Deeb, A.F., Metwally, H.S., El-Sayed, H.E.A., Hassanien, A.M.: Influence of X-ray irradiation on the optical properties of iron (III) chloride tetraphenylporphyrin thin films. Solid State Sci. 12, 552–557 (2010)

    ADS  Google Scholar 

  • El-Nahass, M.M., Abd El-Khalek, H.M., Nawar, A.M.: Topological, morphological and optical properties of Gamma irradiated Ni (II) tetraphenyl porphyrin thin films. Opt. Commun. 285, 1872–1881 (2012)

    ADS  Google Scholar 

  • El-Nahass, M.M., Farag, A.A.M., El-Metwally, M., Abu-Samaha, F.S.H., Elesh, E.: Structural, absorption and dispersion characteristics of nanocrystalline copper tetraphenyl porphyrin thin films. Synth. Met. 195, 110–116 (2014)

    Google Scholar 

  • El-Nahass, M.M., Soliman, H.S., Khalifa, B.A., Soliman, I.M.: Structural and optical properties of nanocrystalline aluminum phthalocyanine chloride thin films Mater. Sci. Semicond. Process. 38, 177–183 (2015)

    Google Scholar 

  • EL-Nahass, M.M., Elesh, E.: Structural and optical properties of nanoparticles of tetraphenyl Porphin cobalt (II) annealed thin films. Optik 202, 163597 (2020)

    ADS  Google Scholar 

  • Emara, A.M., Makhlouf, M.M., Yousef, E.: Influence of temperature-induced nanocrystallization on the optical properties of Ni+ 2-containing glassy tellurite thin films. J. Non-Cryst. Solid 515, 58–67 (2019)

    ADS  Google Scholar 

  • Gao, P., Chen, Z., Zhao-Karger, Z., Mueller, J.E., Jung, C., Klyatskaya, S., Diemant, T., Fuhr, O., Jacob, T., Behm, R.J., Ruben, M.: A porphyrin complex as a self-conditioned electrode material for high-performance energy storage. Angew. Chem. 129(35), 10477–10482 (2017a)

    ADS  Google Scholar 

  • Gao, K., Jo, S.B., Shi, X., Nian, L., Zhang, M., Kan, Y., Lin, F., Kan, B., Xu, B., Rong, Q., Shui, L., Liu, F., Peng, X., Zhou, G., Cao, Y., Jen, A.K.-Y.: Over 12% efficiency nonfullerene all-small-molecule organic solar cells with sequentially evolved multilength scale morphologies. Adv. Mater. 31, 1807842 (2019)

    Google Scholar 

  • Gao, P., Chen, Z., Zhao-Karger, Z., Mueller, J.E., Jung, C., Klyatskaya, S., Diemant, T., Fuhr, O., Jacob, T., Behm, R.J., Ruben, M., Fichtner, M.: A porphyrin complex as a self-conditioned electrode material for high-performance energy storage. Angew. Chem. Int. Ed. 56, 10341–10346 (2017b)

    Google Scholar 

  • Gao, P., Lv, S., Yuan, J., Chen, Z., Shu, H., Yang, X., Liu, E., Tan, S., Ruben, M., Zhao-Karger, Z., Fichtner, M.: Copper porphyrin as a stable cathode for high-performance rechargeable potassium organic batteries. Chemsuschem 12, 2286–2294 (2020)

    Google Scholar 

  • Gouterman, M.: In: Dolphin, D. (ed.) The Porphyrins, vol. 3, pp. 1–165. Academic Press, New York (1978)

    Google Scholar 

  • Gouterman, M., Wagnière, G.H., Snyder, L.C.: Spectra of porphyrins: Part II. Four orbital model. J. Mol. Spectrosc. 11, 108–127 (1963)

    ADS  Google Scholar 

  • Gouterman, M.: Optical spectra and electronic structure of porphyrins and related rings. In: Dolphin, D. (ed.) The Porphyrins. Academic Press, Inc., pp. 1–156 (1978)

  • Heavens, O.S., Hass, G., Thus, R. (eds.): Physics of Thin Films. Academic, New York (1964)

    Google Scholar 

  • Janoschka, T., Martin, N., Martin, U., Friebe, C., Morgenstern, S., Hiller, H., Hager, M.D., Schubert, U.S.: An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015)

    ADS  Google Scholar 

  • Kakui, T., Sugawara, S., Hirata, Y., Kojima, S., Yamamoto, Y.: Anti-aromatic 16π porphyrin-metal complexes with meso-alkyl substituents. Chem. Eur. J. 17, 7768–7771 (2011)

    Google Scholar 

  • Kasha, M., Rawls, H.H., El-bayoumi, A.: The exciton model in molecular spectroscopy. Pure Appl. Chem. 11(34), 371–392 (1965)

    Google Scholar 

  • Kurt, A., Demirelli, K.: Impact of Zn2+ introduced into the central cavity of meso-tetra (4-pyridyl) porphine on its spectroscopic features. Polym. Eng. Sci. 50, 268–270 (2010)

    Google Scholar 

  • Lamichhane, A., Ravindra, N.M.: Energy gap-refractive index relations in perovskites. Materials (basel) 13(8), 1917 (2020)

    ADS  Google Scholar 

  • Laugier, J., Bochu, B.: LMGP-suite suite of programs for the interpretation of x-ray experiments, ENSP/Laboratoire des Materiaux et du Genie Physique, BP46.38042, Saint Martin d’Heres, France (2000)

  • Liao, M., Scheiner, S.: Electronic structure and bonding in metal porphyrins, metal = Fe Co, Ni, Cu, Zn. J. Chem. Phys. 117, 205–219 (2002)

    ADS  Google Scholar 

  • Liu, G., Mazzaro, R., Sun, C., Zhang, Y., Wang, Y., Zhao, H., Han, G., Vomiero, A.: Role of refractive index in highly efficient laminated luminescent solar concentrators. Nano Energy 70, 104470 (2020)

    Google Scholar 

  • Lopes, J.M.S., Sharma, K., Sampaio, R.N., Batista, A.A., Ito, A.S., Machado, A.E.H., Araújo, P.T., Barbosa Neto, N.M.: Novel insights on the vibronic transitions in free base meso-tetrapyridyl porphyrin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 209, 274–279 (2019)

    ADS  Google Scholar 

  • Ma, T., Pan, Z., Miao, L., Chen, C., Han, M., Shang, Z., Chen, J.: Porphyrin‐based symmetric redox‐flow batteries towards cold‐climate energy storage. Angew. Chem. Int. Ed. 57, 3158–3162 (2018)

    Google Scholar 

  • Makhlouf, M.M., Zeyada, H.M.: Effect of annealing temperature and X-ray irradiation on the performance of tetraphenylporphyrin/p-type silicon hybrid solar cell. Solid-State Electron. 105, 51–57 (2015)

    ADS  Google Scholar 

  • Makhlouf, M.M., El-Denglawey, A., Zeyada, H.M., El-Nahass, M.M.: The structural and optical characterizations of tetraphenylporphyrin thin films. J. Lumin. 147, 202–208 (2014)

    Google Scholar 

  • Makhlouf, M.M., Shehata, M.M., Abdelhady, K.: Tuning of structural and optical properties of 5, 10, 15, 20-tetra (4-pyridyl)-21H, 23H-porphine thin films as a promising photovoltaic absorber material. Opt. Mater. 98, 109378 (2019). https://doi.org/10.1016/j.optmat.2019.109378

    Article  Google Scholar 

  • Martienssen, W.: Über die excitonenbanden der alkalihalogenidkristalle. J. Phys. Chem. Solids 2(4), 257–267 (1957)

    ADS  Google Scholar 

  • Mondal, P., Rath, S.P.: Cyclic metalloporphyrin dimers: Conformational flexibility, applications and future prospects. Coord. Chem. Rev. 405, 213117 (2020)

    Google Scholar 

  • Palik, E.D. (ed.): Handbook of Optical Constants of Solids, vol. 3. Academic Press (1998)

    Google Scholar 

  • Park, J.M., Lee, J.H., Jang, W.-D.: Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 407, 213157 (2020)

    Google Scholar 

  • Peng, R., Offenhäusser, A., Ermolenko, Y., Mourzina, Y.: Biomimetic sensor based on Mn (III) meso-tetra (N-methyl-4-pyridyl) porphyrin for non-enzymatic electrocatalytic determination of hydrogen peroxide and as an electrochemical transducer in oxidase biosensor for analysis of biological media. Sens. Actuators B Chem. 321, 128437 (2020)

    Google Scholar 

  • Radwan, A.S., Makhlouf, M.M., Abdel-Latif, E.: Azothiophene dyes nanotubes structure based thin films: synthesis, structural and optical characterization toward application in dye-sensitized solar cells. Dyes Pigments 134, 516–525 (2016)

    Google Scholar 

  • Sakaushi, K., Hosono, E., Nickerl, G., Gemming, T., Zhou, H., Kaskel, S., Eckert, J.: Aromatic porous-honeycomb electrodes for a sodium-organic energy storage. Nat. Commun. 4, 1485 (2013)

    ADS  Google Scholar 

  • Sehgal, P., Narula, A.K.: Metal substituted metalloporphyrins as efficient photosensitizers for enhanced solar energy conversion. J Photochem Photobiol A: Chem. 375, 91–99 (2019)

    Google Scholar 

  • Shin, J.Y., Yamada, T., Yoshikawa, H., Awaga, K., Shinokubo, H.: An antiaromatic electrode-active material enabling high capacity and stable performance of rechargeable batteries. Angew. Chem. 53, 3096–3101 (2014)

    Google Scholar 

  • Shirley, R.: The CRYSFIRE System for Automatic Powder Indexing: User’s Manual. The Lattice Press, Guildford (2000)

    Google Scholar 

  • Tauc, J.: Amorphous and Liquid Semiconductors. Plenum Press, New York (1974)

    Google Scholar 

  • Urbach, F.: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953)

    ADS  Google Scholar 

  • Wang, H., Xiao, L., Yan, L., Chen, S., Zhu, X., Peng, X., Wang, X., Wong, W.-K., Wong, W.-Y.: Structural engineering of porphyrin-based small molecules as donors for efficient organic solar cells. Chem. Sci. 7, 4301–4307 (2016)

    Google Scholar 

  • Wemple, S.H., DiDomenico, M.: Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338–1351 (1971)

    ADS  Google Scholar 

  • Yuan, J., Ren, B., Feng, X., Gao, P., Liu, E., Tan, S.: A coupled polymeric porphyrin complex as a novel cathode for highly stable lithium organic batteries. Chem. Commun. 56, 5437–5440 (2020)

    Google Scholar 

  • Zeyada, H.M., Makhlouf, M.M., El-Nahass, M.M.: Influence of gamma ray irradiation and annealing temperature on the optical constants and spectral dispersion parameters of metal-free and zinc tetraphenylporphyrin thin films: a comparative study. Spectrochim. Acta A Mol. Biomol. Spectrosc. 148, 338–347 (2015)

    ADS  Google Scholar 

  • Zeyada, H.M., Makhlouf, M.M., Ali, M.A.: Structural, optical and dispersion properties of 5, 10, 15, 20-tetraphenyl-21H, 23H-porphyrin zinc thin films. Jpn. J. Appl. Phys. 55, 022601 (2016)

    ADS  Google Scholar 

  • Zhang, A., Li, C., Yang, F., Zhang, J., Wei, Z., Li, W.: An electron acceptor with porphyrin and perylene bisimides for efficient non-fullerene solar cells. Angew. Chem. Int. Ed. 56, 2694–2698 (2017)

    Google Scholar 

  • Zhang, Q., Xu, X., Chen, S., Bodedla, G.B., Sun, M., Hu, Q., Peng, Q., Huang, B., Ke, H., Liu, F., Russell, T.P., Zhu, X.: Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. Sustain. Energy Fuels 2, 2616–2624 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Deanship of Scientific Research at Taif University for the financial support under the project (Grant No. 1-440-6142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Makhlouf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhlouf, M.M., Shehata, M.M., Alburaih, H.A. et al. Thermal annealing impact on structural, optical and dispersion parameters of zinc tetrapyridylporphyrin as a potential absorber thin film for energy conversion and storage devices. Opt Quant Electron 53, 550 (2021). https://doi.org/10.1007/s11082-021-03204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03204-3

Keywords

Navigation