Skip to main content

Advertisement

Log in

Achieving high energy storage performance and breakdown strength in modified strontium titanate ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Lead-free ceramic capacitors with attractive properties such as their environmental friendliness, superior energy density, fast charge and discharge rate, and superior stability have recently received increased attention to meet liber market demands for energy storage devices in low consumption systems. However, overcoming its relatively low energy storage capacity is becoming extremely important. Based on this task, La3+ and Li+ co-doped SrTiO3 ceramics are fabricated by a solid-state reaction method. The effect of La3+ and Li+ contents on the structural, microstructure, dielectrics, and energy storage properties of SrTiO3 ceramics are systematically studied. XRD confirmed the phase structure along with Rietveld refinement studies. The morphological structure is studied using SEM. Through X-ray photoelectron spectroscopy spectra, the chemical composition and the chemical state of Sr(1−x)(Li0.50La0.50)xTiO3 (SLLTx); (0 ≤ x ≤ 8%) ceramics are studied. The energy storage properties are theoretically estimated by integrating the polarization versus electric field P-E hysteresis loop. The results show an increase in La3+ and Li+ content (x), resulting in enhanced dielectric breakdown strength, and maximum polarization yields a higher energy storage density. In the sample with x = 8%, it is found that the energy density is 2.455 J/cm3 and the energy efficiency is more than 90%. The further improvement in dielectric constant, dielectric breakdown strength, enhanced energy storage densities and the energy efficiency maintained > 90% make these materials commercially promising for energy storage device capacitors for a wide range of energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on request.

References

  1. T.H. Chung, K.W. Kwok, J. Alloys Compd. 737, 317–322 (2018)

    Article  CAS  Google Scholar 

  2. M. Lun, W. Wang, Z. Xing, Z. Wan, W. Wu, H. Song, Y. Wang, W. Li, B. Chu, Q. He, J. Am. Ceram. Soc. 102, 5243–5252 (2019)

    Article  CAS  Google Scholar 

  3. X. Qiao, A. Sheng, D. Wu, F. Zhang, B. Chen, P. Liang, J. Wang, X. Chao, Z. Yang, Chem. Eng. J. 408, 127368 (2021)

    Article  CAS  Google Scholar 

  4. C. Jiang, L. Fang, M. Shen, F. Zheng, X. Wu, Appl. Phys. Lett. 94, 071110 (2009)

    Article  CAS  Google Scholar 

  5. J. Qi, M. Cao, Y. Chen, Z. He, C. Tao, H. Hao, Z. Yao, H. Liu, J. Alloys Compd. 772, 1105–1112 (2019)

    Article  CAS  Google Scholar 

  6. W. Pan, M. Cao, J. Qi, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Alloys Compd. 784, 1303–1310 (2019)

    Article  CAS  Google Scholar 

  7. Y.B. Wang, W.J. Jie, C. Yang, X.H. Wei, J.H. Hao, Adv. Funct. Mater. 29, 1808118 (2019)

    Article  CAS  Google Scholar 

  8. G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I.M. Reaney, Chem. Rev. 121(10), 6124–6172 (2021)

    Article  CAS  Google Scholar 

  9. L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J. Li, S. Zhang, Prog. Mater. Sci. 102, 72–108 (2019)

    Article  CAS  Google Scholar 

  10. B. Zhong, Z. Long, C. Yang, Y. Li, X. Wei, Ceram. Int. 46(12), 20565–20569 (2020)

    Article  CAS  Google Scholar 

  11. M. Qin, F. Gao, J. Cizek, S. Yang, X. Fan, L. Zhao, J. Xu, G. Dong, M. Reece, H. Yan, Acta Mater. 164, 76–89 (2019)

    Article  CAS  Google Scholar 

  12. X. Guo, Y. Pu, W. Wang, L. Zhang, J. Ji, R. Shi, Y. Shi, M. Yang, J. Li, ACS Sustain. Chem. Eng. 7(15), 13041–13052 (2019)

    Article  CAS  Google Scholar 

  13. B. Wang, Y. Pu, Y. Shi, X. Guo, L. Zhang, L. Chang, J. Li, R. Li, J. Ji, T. Wei, J. Am. Ceram. Soc. 103(12), 6811–6821 (2020)

    Article  CAS  Google Scholar 

  14. X. Guo, Y. Pu, W. Wang, J. Ji, J. Li, M. Yang, R. Shi, Ceram. Int. 46(10), 16644–16652 (2020)

    Article  CAS  Google Scholar 

  15. J. Liu, Q. Liu, Z. Nie, S. Nie, D. Lu, P. Zhu, Ceram. Int. 45(8), 10334–10341 (2019)

    Article  CAS  Google Scholar 

  16. M. Qin, F. Gao, J. Cizek, S. Yang, X. Fan, L. Zhao, J. Xu, G. Dong, M. Reece, H. Yan, Scripta Mater. 190, 118–120 (2021)

    Article  CAS  Google Scholar 

  17. A. Tkach, O. Okhay, Scr. Mater. 190, 38–39 (2021)

    Article  CAS  Google Scholar 

  18. W. Pan, M. Cao, H. Hao, Z. Yao, Z. Yu, H. Liu, J. Eur. Ceram. 40(1), 49–55 (2020)

    Article  CAS  Google Scholar 

  19. M.S. Alkathy, K.J. Raju, J.A. Eiras, J. Phys. D: Appl. Phys. 54(12), 125501 (2021)

    Article  CAS  Google Scholar 

  20. A. Tkach, O. Okhay, J. Mater. Sci. Technol. 65, 151–153 (2021)

    Article  CAS  Google Scholar 

  21. B. Zhong, C. Zuo, C. Yang, S. Yang, Y. Li, H. Yu, X. Wei, J. Alloys Compd. 901, 163556 (2022)

    Article  CAS  Google Scholar 

  22. X. Zhu, P. Shi, R. Kang, S. Li, Z. Wang, W. Qiao, X. Zhang, L. He, Q. Liu, X. Lou, Chem. Eng. J. 420, 129808 (2021)

    Article  CAS  Google Scholar 

  23. Y. Pu, W. Wang, X. Guo, R. Shi, M. Yang, J. Li, J. Mater. Chem. C 7, 14384–14393 (2019)

    Article  CAS  Google Scholar 

  24. W. Pan, M. Cao, A. Jan, H. Hao, Z. Yao, H. Liu, J. Mater. Chem. C 8, 2019–2027 (2020)

    Article  CAS  Google Scholar 

  25. X. Guo, Y. Pu, W. Wang, J. Ji, J. Li, R. Shi, M. Yang, Ceram. Int. 46, 21719–21727 (2020)

    Article  CAS  Google Scholar 

  26. J. Zhang, K. Tse, M. Wong et al., A brief review of co-doping. Front. Phys. 11, 117405 (2016)

    Article  Google Scholar 

  27. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadi, O.M. Aldossary, Y. Al-Douri, J. Alloys Compd. 883, 160836 (2021)

    Article  CAS  Google Scholar 

  28. K. Wu, H. Wang, Z. Miao, S. Ding, Y. Qi, Y. Ming, W. Ding, H. Yuan, Q. Zheng, D. Lin, Ceram. Int. 46(9), 13159–13169 (2020)

    Article  CAS  Google Scholar 

  29. F. Zeng, M. Cao, L. Zhang, M. Liu, H. Hao, Z. Yao, H. Liu, Ceram. Int. 43(10), 7710–7716 (2017)

    Article  CAS  Google Scholar 

  30. W. Pan, M. Cao, A. Jan, H. Hao, Z. Yao, H. Liu, J. Mater. Chem. C 8(6), 2019–2027 (2020)

    Article  CAS  Google Scholar 

  31. C. Wang, F. Yan, H. Yang, Y. Lin, T. Wang, J. Alloys Compd. 749, 605–611 (2018)

    Article  CAS  Google Scholar 

  32. A. Jan, H. Liu, H. Hao, Z. Yao, M. Emmanuel, W. Pan, A. Ullah, A. Manan, A. Ullah, M. Cao, A.S. Ahmad, J. Alloys Compd. 830, 154611 (2020)

    Article  CAS  Google Scholar 

  33. T. Li, P. Chen, F. Li, C. Wang, Chem. Eng. J. 406, 127151 (2021)

    Article  CAS  Google Scholar 

  34. L. Zheng, P. Sun, P. Zheng, W. Bai, L. Li, F. Wen, J. Zhang, N. Wang, Y. Zhang, J. Mater. Chem. C 9(15), 5234–5243 (2021)

    Article  CAS  Google Scholar 

  35. H. Yang, J. Tian, Y. Lin, J. Ma, Chem. Eng. J. 418, 129337 (2021)

    Article  CAS  Google Scholar 

  36. Y. Fang, M. Cao, Z. He, W. Pan, H. Wang, Z. Yao, H. Hao, H. Liu, J. Mater. Sci.: Mater. Electron. 31(16), 13408–13414 (2020)

    CAS  Google Scholar 

  37. P. Zhao, Z. Fang, X. Zhang, J. Chen, Y. Shen, X. Zhang, Q. An, C. Yang, X. Gao, S. Zhang, B. Tang, ACS Appl. Mater. Interface 13, 24833–24855 (2021)

    Article  CAS  Google Scholar 

  38. L. Cao, Y. Yuan, E. Li, S. Zhang, Ceram. Int. 45(5), 5660–5667 (2019)

    Article  CAS  Google Scholar 

  39. Z. Yang, Y. Yuan, L. Cao, E. Li, S. Zhang, Ceram. Int. 46(8), 11282–11289 (2020)

    Article  CAS  Google Scholar 

  40. X. Kong, L. Yang, Z. Cheng, S. Zhang, J. Am. Ceram. Soc. 103(3), 1722–1731 (2020)

    Article  CAS  Google Scholar 

  41. L.L. Liu, B.K. Chu, P. Li, P. Fu, J. Du, J.G. Hao, W. Li, H.R. Zeng, Chem. Eng. J. 429, 132548 (2022)

    Article  CAS  Google Scholar 

  42. M.V. Le et al., Catalysts 11(5), 564 (2021)

    Article  CAS  Google Scholar 

  43. R.D. Shannon, Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  44. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534–534 (2011)

    Article  CAS  Google Scholar 

  45. V.D. Mote, Y. Purushotham, B.N.J. Dole, Theor. Appl. Phys. 6(1), 1–8 (2012)

    Article  Google Scholar 

  46. M.S. Alkathy, K.K. Bokinala, K. James Raju, C. J. Mater. Sci.: Mater. Electron. 27(4), 3175–3181 (2016)

    CAS  Google Scholar 

  47. M.S. Alkathy, K.C.J. Raju, Mater. Sci.: Mater. Electron. 27(9), 8957–8965 (2016)

    CAS  Google Scholar 

  48. K. Madhan, R. Murugaraj, Appl. Phys. A 126(2), 1–12 (2020)

    Article  CAS  Google Scholar 

  49. A.K. Yadav, H. Fan, B. Yan et al., J. Mater. Sci. Mater. Electron. 32, 23103–23115 (2021)

    Article  CAS  Google Scholar 

  50. A.K. Yadav, A. Verma, S. Kumar, V. Srihari, A.K. Sinha, V.R. Reddy, S.W. Liu, S. Biring, S. Sen, J. Appl. Phys. 123, 2124102 (2018)

    Article  CAS  Google Scholar 

  51. R.C. Hatch, K.D. Fredrickson, M. Choi, C. Lin, H. Seo, A.B. Posadas, A.A. Demkov, J. Appl. Phys. 114(10), 103710 (2013)

    Article  CAS  Google Scholar 

  52. B. Erdem, R.A. Hunsicker, G.W. Simmons, E.D. Sudol, V.L. Dimonie, M.S. El-Aasser, Langmuir 17(9), 2664–2669 (2001)

    Article  CAS  Google Scholar 

  53. L. Li, T. Lu, N. Zhang, J. Li, Z.J. Cai, Mater. Chem. C 6(9), 2283–2294 (2018)

    Article  CAS  Google Scholar 

  54. M.S. Alkathy, F.L. Zabotto, K.J. Raju, J.A. Eiras, Mater. Chem. Phys. 275, 125235 (2022)

    Article  CAS  Google Scholar 

  55. M.S. Alkathy, F.L. Zabotto, F.P. Milton, J.A. Eiras, J. Alloys Compd. 908, 164222 (2022)

    Article  CAS  Google Scholar 

  56. Y. Lee, C.H. Lee, T. Nam, S. Lee, I.K. Oh, J.Y. Yang, D.W. Choi, C. Yoo et al., J. Mater. Sci. 54(16), 11145–11156 (2019)

    Article  CAS  Google Scholar 

  57. N. Hornsveld, B. Put, W.M. Kessels, P.M. Vereecken, M. Creatore, Plasma-assisted and thermal atomic layer deposition of electrochemically active Li2CO3. RSC Adv. 7(66), 41359–41368 (2017)

    Article  CAS  Google Scholar 

  58. M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloys Compd. 579, 473 (2013)

    Article  CAS  Google Scholar 

  59. M. Rizwan, I. Zeba, M. Shakil, S.S. Gillani, Z. Usman, Optik 211, 164611 (2020)

    Article  CAS  Google Scholar 

  60. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties and Applications (Chapman and Hall, London, 1990), p. 24

    Google Scholar 

  61. S.K. Ghosh, M. Ganguly, S.K. Rout, T.P. Sinha, Eur. Phys. J. Plus 130(4), 1–18 (2015)

    Article  CAS  Google Scholar 

  62. M. Soni, M. Saleem, N. Bajpai, S. Chouhan, M.D. Varshney, A. Mishra, AIP Conf. Proc. 2100, 020185 (2019)

    Article  CAS  Google Scholar 

  63. M.S. Alkathy, J.A. Eiras, K.J. Raju, Ferroelectrics 570(1), 153–161 (2021)

    Article  CAS  Google Scholar 

  64. Z. Liang, M. Liu, C. Ma, L. Shen, L. Lu, C.L. Jia, J. Mater. Chem. A 6(26), 12291–12297 (2018)

    Article  CAS  Google Scholar 

  65. X. Jiang, D. Wang, M. Sun, N. Zheng, S. Jia, H. Liu, D. Zhang, W. Li, RSC Adv. 7(79), 49962–49968 (2017)

    Article  CAS  Google Scholar 

  66. A. Kumar, S.H. Kim, M. Peddigari et al., Electron. Mater. Lett. 15, 323–330 (2019)

    Article  CAS  Google Scholar 

  67. N. Qu, H. Du, X. Hao, J. Mater. Chem. C 7(26), 7993–8002 (2019)

    Article  CAS  Google Scholar 

  68. A. Kumar, J.Y. Yoon, A. Thakre, M. Peddigari, D.Y. Jeong, Y.M. Kong, J. Ryu, J. Korean Ceram. Soc. 56(4), 412–420 (2019)

    Article  CAS  Google Scholar 

  69. Z. Yao, Q. Luo, G. Zhang, H. Hao, M. Cao, H.J. Liu, Mater. Sci.: Mater. Electron. 28(15), 11491–11499 (2017)

    CAS  Google Scholar 

  70. A. Kumar, G. Lee, Y.G. Chae, A. Thakre, H.S. Choi, G.H. Nam, J. Ryu, Ceram. Int. 47(22), 31590–31596 (2021)

    Article  CAS  Google Scholar 

  71. A. Kumar, S.H. Kim, A. Thakre, G. Lee, Y.G. Chae, J. Ryu, J. Therm. Spray Technol. 30(3), 591–602 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the experimental facilities provided by CNPq and FAPESP in Grupo de Materiais Ferroicos (GMF), Physics Department/ UFSCar. For financial support, Dr Alkathy is greatly indebted to the Sao Paulo Research Foundation (FAPESP: Grant no# 2019/03110-8) and (FAPESP: Grant no# 2017/13769-1).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed in preparation of the manuscript. MSA: Synthesis, Analysis and interpretation of the data, calculations, visualization, conceptualization, methodology, and writing-original draft. FLZ and FPM: Conceptualization, methodology, suggestions, and spectroscopic characterizations, and Prof JAE: supervision, writing, and approval of the final version.

Corresponding authors

Correspondence to Mahmoud S. Alkathy or J. A. Eiras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human and animal rights

This article does not contain any studies involving animal or human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkathy, M.S., Zabotto, F.L., Milton, F.P. et al. Achieving high energy storage performance and breakdown strength in modified strontium titanate ceramics. J Mater Sci: Mater Electron 33, 15483–15494 (2022). https://doi.org/10.1007/s10854-022-08455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08455-8

Navigation