Skip to main content
Log in

High-performance gas sensor based on GO/In2O3 nanocomposite for ethanol detection

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Gas sensors are widely used because of their high sensitivity, low cost and simple fabrication. The development of high-performance ethanol gas sensors are of great significance for the environment and health protection. In this work, using a simple and efficient solvothermal method, we fabricated a composite sensor based on graphene oxide (GO) supported indium oxide (GO/In2O3) for quantitatively sensing ethanol gas in 65% humidity. The structure and morphology of the composites were characterized by SEM, TEM, XRD, XPS, Raman and BET analysis. And, the sensing performance of composites were studied. The results showed that the sensor based on 0.5% GO/In2O3 exhibited good-sensing performance in the environment of relative humidity (> 65%). The modified sensor also showed good response linearity in the ethanol concentration range of 1–200 ppm, suggesting its potential application for quantitative detection of ethanol. It is concluded that the loading of GO improved the gas-sensing performance of indium oxide. Our work is of great significance for the application of In2O3 in ethanol sensing in practical life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. K. Zhang, S. Qin, P. Tang et al., Ultra-sensitive ethanol gas sensors based on nanosheet-assembled hierarchical ZnO–In2O3 heterostructures. J. Hazard. Mater. (2020). https://doi.org/10.1016/j.jhazmat.2020.122191

    Article  Google Scholar 

  2. P.F. Pereira, R.M.F. Sousa, R.A.A. Munoz et al., Simultaneous determination of ethanol and methanol in fuel ethanol using cyclic voltammetry. Fuel (2013). https://doi.org/10.1016/j.fuel.2012.07.034

    Article  Google Scholar 

  3. D.L. Mccorkle, R.J. Warmack, S.V. Patel et al., Ethanol vapor detection in aqueous environments using micro-capacitors and dielectric polymers. Sens. Actuators B Chem. 107(2), 892–903 (2005). https://doi.org/10.1016/j.snb.2004.12.051

    Article  CAS  Google Scholar 

  4. A.R. Guedes, A.R.C. De Souza, R.C. Turola Barbi et al., Extraction of Synadenium grantii Hook f. using conventional solvents and supercritical CO2+ ethanol. J. Supercrit. Fluids (2020). https://doi.org/10.1016/j.supflu.2020.104796

    Article  Google Scholar 

  5. F. Li, Q. Lv et al., Ultra-sensitive Ag–LaFeO3 for selective detection of ethanol. J. Mater. Sci. 56(27), 15061–15068 (2021)

    Article  CAS  Google Scholar 

  6. A. Mirzaei, S.G. Leonardi, G. Neri, Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram. Int. 42(14), 15119–15141 (2016). https://doi.org/10.1016/j.ceramint.2016.06.145

    Article  CAS  Google Scholar 

  7. R.A. Kadir, R.A. Rani, A.S. Zoolfakar et al., Nb2O5 Schottky based ethanol vapour sensors: effect of metallic catalysts. Sens. Actuators B Chem (2014). https://doi.org/10.1016/j.snb.2014.04.083

    Article  Google Scholar 

  8. H. Pontes, P. Guedes De Pinho, S. Casal et al., GC determination of acetone, acetaldehyde, ethanol, and methanol in biological matrices and cell culture. J. Chromatogr. Sci. 47(4), 272–278 (2009). https://doi.org/10.1093/chromsci/47.4.272

    Article  CAS  Google Scholar 

  9. D.R. Battiste, S.E. Fry, F.T. White, M.W. Scoggins, T.B. McWilliams, Determination of ethanol in gasohol by infrared spectrometry. Anal. Chem. 53(7), 1096–1099 (1981)

    Article  CAS  Google Scholar 

  10. Y. Weng, D. Deng, L. Zhang et al., A cataluminescence gas sensor based on mesoporous Mg-doped SnO2 structures for detection of gaseous acetone. Anal. Methods 8(43), 7816–7823 (2016)

    Article  CAS  Google Scholar 

  11. Shailja, K.J. Singh, R.C. Singh, Highly sensitive and selective ethanol gas sensor based on Ga-doped NiO nanoparticles. J. Mater. Sci. Mater. Electron. 32(8), 11274–11290 (2021)

    Article  CAS  Google Scholar 

  12. J. Zhao, M. Hu, Y. Liang et al., A room temperature sub-ppm NO2 gas sensor based on WO3 hollow spheres. New. J. Chem. 44(13), 5064–5070 (2020)

    Article  CAS  Google Scholar 

  13. Z. Feng, C. Gao, X. Ma et al., Well-dispersed Pd nanoparticles on porous ZnO nanoplates via surface ion exchange for chlorobenzene-selective sensor. RSC Adv. 9(72), 42351–42359 (2019)

    Article  CAS  Google Scholar 

  14. A. Umar, A.A. Ibrahim, U.T. Nakate et al., Fabrication and characterization of CuO nanoplates based sensor device for ethanol gas sensing application. Chem. Phys. Lett. (2021). https://doi.org/10.1016/j.cplett.2020.138204

    Article  Google Scholar 

  15. R. Xing, Q. Li, L. Xia et al., Au-modified three-dimensional In2O3 inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes. Nanoscale 7(30), 13051–13060 (2015)

    Article  CAS  Google Scholar 

  16. N. Sui, P. Zhang, T. Zhou et al., Selective ppb-level ozone gas sensor based on hierarchical branch-like In2O3 nanostructure. Sens. Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2021.129612

    Article  Google Scholar 

  17. Y. Sun, Z. Zhao, R. Zhou et al., Synthesis of In2O3 nanocubes, nanocube clusters, and nanocubes-embedded Au nanoparticles for conductometric CO sensors. Sens. Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2021.130433

    Article  Google Scholar 

  18. J. Xu, Y. Chen, J. Shen, Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods. Mater. Lett. 62(8), 1363–1365 (2008). https://doi.org/10.1016/j.matlet.2007.08.054

    Article  CAS  Google Scholar 

  19. Z. Li, S. Yan, S. Zhang et al., Ultra-sensitive UV and H2S dual functional sensors based on porous In2O3 nanoparticles operated at room temperature. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.08.188

    Article  Google Scholar 

  20. X. Hu, L. Tian, H. Sun et al., Highly enhanced NO2 sensing performances of Cu-doped In2O3 hierarchical flowers. Sens. Actuators B Chem. (2015). https://doi.org/10.1016/j.snb.2015.06.080

    Article  Google Scholar 

  21. Z.-H. Ma, R.-T. Yu, J.-M. Song, Facile synthesis of Pr-doped In2Onanoparticles and their high gas sensing performance for ethanol. Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2019.127377

    Article  Google Scholar 

  22. Y. Wang, L. Yao, L. Xu et al., Enhanced NO2 gas sensing properties based on Rb-doped hierarchical flower-like In2O3 microspheres at low temperature. Sens. Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2021.129497

    Article  Google Scholar 

  23. S. Zhou, M. Chen, Q. Lu et al., Ag nanoparticles sensitized In2O3 nanograin for the ultrasensitive HCHO detection at room temperature. Nanoscale Res. Lett. 14(1), 365 (2019). https://doi.org/10.1186/s11671-019-3213-6

    Article  CAS  Google Scholar 

  24. X. Liu, H. Wang, X. Li et al., Fern-like metal-organic frameworks derived In2O3/ZnO nanocomposite for superior triethylamine sensing properties. Sens. Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2021.130424

    Article  Google Scholar 

  25. W. Zheng, X. Lu, W. Wang et al., A highly sensitive and fast-responding sensor based on electrospun In2O3 nanofibers. Sens. Actuators B Chem. 142(1), 61–65 (2009). https://doi.org/10.1016/j.snb.2009.07.031

    Article  CAS  Google Scholar 

  26. J. Hu, M. Chen, Q. Rong et al., Formaldehyde sensing performance of reduced graphene oxide-wrapped hollow SnO2 nanospheres composites. Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2019.127584

    Article  Google Scholar 

  27. F. Schedin, A.K. Geim, S.V. Morozov et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652–655 (2007)

    Article  CAS  Google Scholar 

  28. K. Toda, R. Furue, S. Hayami, Recent progress in applications of graphene oxide for gas sensing: A review. Anal. Chim. Acta. (2015). https://doi.org/10.1016/j.aca.2015.02.002

    Article  Google Scholar 

  29. L. Sansone, V. Malachovska, P. La Manna, P. Musto, A. Borriello, G. De Luca, M. Giordano, Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics. Sens. Actuators B Chem. 202, 523–526 (2014)

    Article  CAS  Google Scholar 

  30. R. Arsat, M. Breedon, M. Shafiei et al., Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem. Phys. Lett. 467(4), 344–347 (2009). https://doi.org/10.1016/j.cplett.2008.11.039

    Article  CAS  Google Scholar 

  31. M.G. Chung, D.H. Kim, H.M. Lee et al., Highly sensitive NO2 gas sensor based on ozone treated graphene. Sens. Actuators B Chem. (2012). https://doi.org/10.1016/j.snb.2012.02.036

    Article  Google Scholar 

  32. X. Rong, D. Chen, G. Qu et al., Effects of graphene on the microstructures of SnO2@rGO nanocomposites and their formaldehyde-sensing performance. Sens. Actuators B Chem. 269, 223–237 (2018). https://doi.org/10.1016/j.snb.2018.04.176

    Article  CAS  Google Scholar 

  33. D. Wang, M. Zhang, Z. Chen et al., Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide. Sens. Actuators B Chem. 250, 533–542 (2017). https://doi.org/10.1016/j.snb.2017.04.164

    Article  CAS  Google Scholar 

  34. C. Han, Z. Chen, N. Zhang et al., Hierarchically CdS decorated 1D ZnO nanorods 2D graphene hybrids: low temperature synthesis and enhanced photocatalytic performance. Adv. Funct. Mater. 25, 221–229 (2015)

    Article  CAS  Google Scholar 

  35. S. Kumar, S. Kumar, P. Sharma et al., CdS nanofilms: effect of film thickness on morphology and optical band gap. J. Appl. Phys. 112(12), 123512 (2012)

    Article  Google Scholar 

  36. A. Dhupar, S. Kumar et al., Mixed structure Zn(S,O) nanoparticles: synthesis and characterization. Mater. Sci. 37(2), 230–237 (2019)

    CAS  Google Scholar 

  37. H. Gao, Y. Ma, P. Song et al., Three-dimensional reduced graphene oxide/cobaltosic oxide as a high-response sensor for triethylamine gas at room temperature. Mater. Sci. Semicond. Process. (2021). https://doi.org/10.1016/j.mssp.2021.105904

    Article  Google Scholar 

  38. Y. Sun, Z. Wang, W. Wang et al., Electrospinning preparation of Pd@Co3O4–ZnO composite nanofibers and their highly enhanced VOC sensing properties. Mater. Res. Bull. 109, 255–264 (2019). https://doi.org/10.1016/j.materresbull.2018.10.001

    Article  CAS  Google Scholar 

  39. J. Hu, Y. Liang, Y. Sun et al., Highly sensitive NO2 detection on ppb level by devices based on Pd-loaded In2O3 hierarchical microstructures. Sens. Actuators B Chem. 252, 116–126 (2017). https://doi.org/10.1016/j.snb.2017.05.113

    Article  CAS  Google Scholar 

  40. S. Chen, Y. Qiao, J. Huang et al., One-pot synthesis of mesoporous spherical SnO2@graphene for high-sensitivity formaldehyde gas sensors. RSC Adv. 6(30), 25198–25202 (2016)

    Article  CAS  Google Scholar 

  41. V. Van Quang, N. Van Dung, N. Sy Trong, N. Duc Hoa, N. Van Duy, N. Van Hieu, Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 105(1), 013107 (2014)

    Article  Google Scholar 

  42. Z. Wang, R. Zhang, F. Gu, D. Han, Facile synthesis of In2O3 nanoparticles with high response to formaldehyde at low temperature. Int. J. Appl. Ceram. Technol. 16(4), 1570–1580 (2019)

    Article  CAS  Google Scholar 

  43. M.T. Uddin, Y. Nicolas, C. Olivier et al., Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 51(14), 7764–7773 (2012)

    Article  CAS  Google Scholar 

  44. Y. Xiong, W. Xu, Z. Zhu et al., ZIF-derived porous ZnO–Co3O4 hollow polyhedrons heterostructure with highly enhanced ethanol detection performance. Sens. Actuators B Chem. 253, 523–532 (2017). https://doi.org/10.1016/j.snb.2017.06.169

    Article  CAS  Google Scholar 

  45. J. Lu, N. Jia, L. Cheng et al., rGO/CoTiO3 nanocomposite with enhanced gas sensing performance at low working temperature. J. Alloys Compd. 739, 227–234 (2018). https://doi.org/10.1016/j.jallcom.2017.12.129

    Article  CAS  Google Scholar 

  46. X. Liu, J. Liu, Q. Liu et al., Template-free synthesis of rGO decorated hollow Co3O4 nano/microspheres for ethanol gas sensor. Ceram. Int. 44(17), 21091–21098 (2018). https://doi.org/10.1016/j.ceramint.2018.08.146

    Article  CAS  Google Scholar 

  47. M. Tian, J. Miao, P. Cheng et al., Layer-by-layer nanocomposites consisting of Co3O4 and reduced graphene (rGO) nanosheets for high selectivity ethanol gas sensors. Appl. Surf. Sci. 479, 601–607 (2019). https://doi.org/10.1016/j.apsusc.2019.02.148

    Article  CAS  Google Scholar 

  48. B. Huang, Z. Zhang, C. Zhao et al., Enhanced gas-sensing performance of ZnO@In2O3 core@shell nanofibers prepared by coaxial electrospinning. Sens. Actuators B Chem. 255, 2248–2257 (2018). https://doi.org/10.1016/j.snb.2017.09.022

    Article  CAS  Google Scholar 

  49. Q. Chen, S.Y. Ma, X.L. Xu et al., Optimization ethanol detection performance manifested by gas sensor based on In2O3/ZnS rough microspheres. Sens. Actuators B Chem. 264, 263–278 (2018). https://doi.org/10.1016/j.snb.2018.02.172

    Article  CAS  Google Scholar 

  50. Y. Zhao, S. Wang, W. Yuan et al., Selective detection of methane by Pd-In2O3 sensors with a catalyst filter film. Sens. Actuators B Chem. (2021). https://doi.org/10.1016/j.snb.2020.129030

    Article  Google Scholar 

  51. X. Wang, J. Zhang, Y. He et al., Porous Nd-doped In2O3 nanotubes with excellent formaldehyde sensing properties. Chem. Phys. Lett. 658, 319–323 (2016). https://doi.org/10.1016/j.cplett.2016.05.050

    Article  CAS  Google Scholar 

  52. Y. Cao, Y. He, X. Zou et al., Tungsten oxide clusters decorated ultrathin In2O3 nanosheets for selective detecting formaldehyde. Sens. Actuators B Chem. 252, 232–238 (2017). https://doi.org/10.1016/j.snb.2017.05.181

    Article  CAS  Google Scholar 

  53. S. Yu, X. Jia, J. Yang et al., Highly sensitive ethanol gas sensor based on CuO/ZnSnO3 heterojunction composites. Mater. Lett. (2021). https://doi.org/10.1016/j.matlet.2021.129531

    Article  Google Scholar 

  54. X. Min, X. Hu, W. Quan et al., Ultra-highly sensitive detection of ppb-level acetone gas using novel multicore-shell porous zinc oxide microspheres. Ceram. Int. 47(10, Part A), 13745–13755 (2021). https://doi.org/10.1016/j.ceramint.2021.01.236

    Article  CAS  Google Scholar 

  55. A. Umar, A.A. Ibrahim, H.Y. Ammar et al., Urchin like CuO hollow microspheres for selective high response ethanol sensor application: Experimental and theoretical studies. Ceram. Int. 47(9), 12084–12095 (2021). https://doi.org/10.1016/j.ceramint.2021.01.053

    Article  CAS  Google Scholar 

  56. F. Huang, W. Yang, F. He et al., Controlled synthesis of flower-like In2O3 microrods and their highly improved selectivity toward ethanol. Sens. Actuators B Chem. 235, 86–93 (2016). https://doi.org/10.1016/j.snb.2016.05.060

    Article  CAS  Google Scholar 

  57. V. Dhingra, S. Kumar, R. Kumar et al., Room temperature SO2 and H2 gas sensing using hydrothermally grown GO–ZnO nanorod composite films. Mater. Res. Express 7(6), 065012 (2020)

    Article  CAS  Google Scholar 

  58. R.S. Andre, F.M. Shimizu, C. Miyazaki et al., Hybrid layer-by-layer (LbL) films of polyaniline, graphene oxide and zinc oxide to detect ammonia. Sens. Actuators B Chem. 238, 795–801 (2017). https://doi.org/10.1016/j.snb.2016.07.099

    Article  CAS  Google Scholar 

  59. N. Hu, Y. Wang, J. Chai et al., Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens. Actuators B Chem. 163(1), 107–114 (2012). https://doi.org/10.1016/j.snb.2012.01.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. U21A20290 and 22176044), National Key Research and Development Program of China (Grant No. 2017YFA0207003), and Projects of Talents Recruitment of GDUPT (Grant Nos. 2019rc056 and 2019rc057), Maoming Science and Technology Plan Project, China (2020576).

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. U21A20290,), National Key Research and Development Program of China (Grant No. 2017YFA0207003).

Author information

Authors and Affiliations

Authors

Contributions

XM: Data curation, Methodology, Investigation, Writing—original draft; YY: Methodology, Investigation; JP: Methodology; MS: Writing—original draft, Writing—review & editing; ZC: Investigation; RY: Investigation; PS: Investigation; XW: Writing—review & editing; SW: Project administration, Supervision, Writing—review & editing.

Corresponding author

Correspondence to Suhua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 36897.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Yuan, Y., Peng, J. et al. High-performance gas sensor based on GO/In2O3 nanocomposite for ethanol detection. J Mater Sci: Mater Electron 33, 15460–15472 (2022). https://doi.org/10.1007/s10854-022-08452-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08452-x

Navigation