Skip to main content
Log in

Effect of heat treatment temperature on the structural, morphological, optical and water contact angle properties of brookite TiO2 thin film deposited via green sol–gel route for photocatalytic activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Brookite has only been utilized a few times and is always a by-product of TiO2. There have been few studies on the preparation of brookite coatings till recently with the existence of solvent. In this study, the structural, morphological, optical and water contact angle properties of brookite thin films deposited via green sol–gel route (without the use of a solvent) were reported. The TiO2 coatings were deposited on a glass substrate via a spin coating method at various temperatures (200 °C, 300 °C, 400 °C and 500 °C). X-ray diffraction analysis revealed the formation of brookite (111) and (023) at 200 °C, 300 °C and 400 °C with an average crystallite size of 7.8 to 58.4 nm. Raman analysis affirmed the brookite presence. Fourier Transform Infra-Red analysis also reveals that brookite thin film exhibits Ti–O–Ti bonding at 400–800 cm−1. A uniform surface of brookite coating was observed at low temperature with an average thicknesses of 350.6 to 618.7 nm. The band gap energy was in the range of 3.37 to 3.90 eV. The water contact angle for brookite coating shows hydrophilic properties throughout all temperatures. The photocatalytic degradation efficiency of methylene blue attributed to the higher crystallinity of brookite thin film heated at 300 °C is of 97.8% after 240 min under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. R.S. Pedanekar, S.K. Shaikh, K.Y. Rajpure, Thin film photocatalysis for environmental remediation: a status review. Curr. Appl. Phys. 20, 931–952 (2020). https://doi.org/10.1016/j.cap.2020.04.006

    Article  Google Scholar 

  2. S.A. Yazid, Z.M. Rosli, J.M. Juoi, Effect of titanium (IV) isopropoxide molarity on the crystallinity and photocatalytic activity of titanium dioxide thin film deposited via green sol–gel route. J. Mater. Res. Technol. 8, 1434–1439 (2019). https://doi.org/10.1016/j.jmrt.2018.10.009

    Article  CAS  Google Scholar 

  3. R. Khoshnavazi, S. Fereydouni, L. Bahrami, Enhanced photocatalytic activity of nanocomposites of TiO2 doped with Zr, Y or Ce polyoxometalates for degradation of methyl orange dye. Water Sci. Technol. 73, 1746–1755 (2016). https://doi.org/10.2166/wst.2016.008

    Article  CAS  Google Scholar 

  4. A. Castro-Beltrán, P.A. Luque, H.E. Garrafa-Gálvez, R.A. Vargas-Ortiz, A. Hurtado-Macías, A. Olivas, J.L. Almaral-Sánchez, C.G. Alvarado-Beltrán, Titanium butoxide molar ratio effect in the TiO2 nanoparticles size and methylene blue degradation. Optik 157, 890–894 (2018). https://doi.org/10.1016/j.ijleo.2017.11.185

    Article  CAS  Google Scholar 

  5. M. Karimipour, M. Sanjari, M. Molaei, The synthesis of highly oriented brookite nanosheets using graphene oxide as a sacrificing template. J. Mater. Sci. Mater. Electron. 28, 9410–9415 (2017). https://doi.org/10.1007/s10854-017-6682-3

    Article  CAS  Google Scholar 

  6. N.D. Johari, Z.M. Rosli, J.M. Juoi, S.A. Yazid, Comparison on the TiO2 crystalline phases deposited via dip and spin coating using green sol–gel route. J. Mater. Res. Technol. 8, 2350–2358 (2019). https://doi.org/10.1016/j.jmrt.2019.04.018

    Article  CAS  Google Scholar 

  7. T.T.H. Tran, K. Hendrik, F.I. Muhammad, F.U.B. Christine, T.H. Vuong, Q.L. Nguyen, Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile. Appl. Catal. B: Environ. 200, 647–658 (2017). https://doi.org/10.1016/j.apcatb.2016.07.017

    Article  CAS  Google Scholar 

  8. T.A. Kandiel, L. Robben, A. Alkaim, D.W. Bahnemann, Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 12, 602–609 (2012). https://doi.org/10.1039/c2pp25217a

    Article  CAS  Google Scholar 

  9. T.A. Kandiel, A. Feldhoff, L. Robben, R. Dillert, D.W. Bahnemann, Tailored titanium dioxide nanomaterials: anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 22, 2050–2060 (2010). https://doi.org/10.1021/cm903472p

    Article  CAS  Google Scholar 

  10. J.J.M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, A. Yamakata, Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: comparison with anatase and rutile TiO2 powders. ACS Catal. 7, 2644–2651 (2017). https://doi.org/10.1021/acscatal.7b00131

    Article  CAS  Google Scholar 

  11. A.D. Paola, M. Bellardita, L. Palmisano, Brookite, the least known TiO2 photocatalyst. Catalysts 3, 36–73 (2013). https://doi.org/10.3390/catal3010036

    Article  CAS  Google Scholar 

  12. A. Kogo, Y. Sanehira, Y. Numata, M. Ikegami, T. Miyasaka, Amorphous metal oxide blocking layers for highly efficient low-temperature brookite TiO2-based perovskite solar cells. ACS Appl. Mater. Interfaces 10, 2224–2229 (2018). https://doi.org/10.1021/acsami.7b16662

    Article  CAS  Google Scholar 

  13. Y. Djaoued, R. Brüning, D. Bersani, P.P. Lottici, S. Badilescu, Sol–gel nanocrystalline brookite-rich titania films. Mater. Lett. 58, 2618–2622 (2004). https://doi.org/10.1016/j.matlet.2004.03.034

    Article  CAS  Google Scholar 

  14. U.O.A. Arier, F.Z. Tepehan, Controlling the particle size of nanobrookite TiO2 thin films. J. Alloys Compd. 509, 8262–8267 (2011). https://doi.org/10.1016/j.jallcom.2011.05.112

    Article  CAS  Google Scholar 

  15. A.M. Alotaibi, S. Sathasivam, B.A.D. Williamson, A. Ka, C. Sotelo-vazquez, A. Taylor, D.O. Scanlon, I.P. Parkin, Chemical vapor deposition of photocatalytically active pure brookite TiO2 thin films. Chem. Mater. 30, 1353–1361 (2018). https://doi.org/10.1021/acs.chemmater.7b04944

    Article  CAS  Google Scholar 

  16. M.P. Moret, R. Zallen, D.P. Vijay, S.B. Desu, Brookite-rich titania films made by pulsed laser deposition. Thin Solid Films 366, 8–10 (2000). https://doi.org/10.1016/S0040-6090(00)00862-2

    Article  CAS  Google Scholar 

  17. Y. Takahashi, H. Suzuki, M. Nasu, Rutile growth at the surface of TiO2 films deposited by vapour-phase decomposition of isopropyl titanate. J. Chem. Soc. Faraday Trans. 1(81), 3117–3125 (1985). https://doi.org/10.1039/F19858103117

    Article  Google Scholar 

  18. A. López, D. Acosta, A.I. Martínez, J. Santiago, Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity. Powder Technol. 202, 111–117 (2010). https://doi.org/10.1016/j.powtec.2010.04.025

    Article  CAS  Google Scholar 

  19. Z. Chen, R. Burtovyy, K.G. Kornev, I. Luzinov, F. Peng, Dense and crack-free mullite films obtained from a hybrid sol–gel/dip-coating approach. J. Mater. Res. 32, 1665–1673 (2017). https://doi.org/10.1557/jmr.2017.122

    Article  CAS  Google Scholar 

  20. G. Gülşen, M. Naci Inci, Thermal optical properties of TiO2 films. Opt. Mater. 18, 373–381 (2002). https://doi.org/10.1016/S0925-3467(01)00176-8

    Article  Google Scholar 

  21. N.N. Hafizah, M.Z. Musa, M.H. Mamat, M. Rusop, Characterization of titanium dioxide nanopowder synthesized by sol gel grinding method: effect of TiO2 precursor concentration. IEEE Colloquium Human. Sci. Eng. 2012, 863–867 (2013). https://doi.org/10.1109/CHUSER.2012.6504436

    Article  Google Scholar 

  22. R. Verma, B. Mantri, Ramphal, A.K. Srivastava, Shape control synthesis, characterizations, mechanisms and optical properties of larg scaled metal oxide nanostructures of ZnO and TiO2. Adv. Mater. Lett. 6, 324–333 (2015). https://doi.org/10.5185/amlett.2015.5661

    Article  CAS  Google Scholar 

  23. A. Mahyar, A.R. Amani-Ghadim, Influence of solvent type on the characteristics and photocatalytic activity of TiO2 nanoparticles prepared by the sol–gel method. Micro. Nano. Lett. 6, 244–248 (2011). https://doi.org/10.1049/mnl.2011.0058

    Article  CAS  Google Scholar 

  24. P.R. Koteswararao, S.L. Tulasi, Y. Pavani, Impact of solvents on environmental pollution. J. Chem. Pharm. Sci. 3, 132–135 (2014)

    Google Scholar 

  25. N. Uzma, B.M.K.M. Salar, B.S. Kumar, N. Aziz, M.A. David, V.D. Reddy, Impact of organic solvents and environmental pollutants on the physiological function in petrol filling workers. Int. J. Environ. Res. Public Health 5, 139–146 (2008)

    Article  CAS  Google Scholar 

  26. P.K. Rama, S.L. Tulasi, Y. Pavani, Impact of solvents on environmental pollution. J. Chem. Pharm. Sci. 3, 132–135 (2014)

    Google Scholar 

  27. E.R. Spada, E.A. Pereira, M.A. Montanhera, L.H. Morais, R.G. Freitas, R.G. Costa, G.B. Soares, C. Ribeiro, F.R.D. Paula, Preparation, characterization and application of phase-pure anatase and rutile TiO2 nanoparticles by new green route. J. Mater. Sci.: Mater Electron. 28, 16932–16938 (2017). https://doi.org/10.1007/s10854-017-7613-z

    Article  CAS  Google Scholar 

  28. D. Komaraiah, P. Madhukar, Y. Vijayakumar, M.V. Ramana Reddy, R. Sayanna, Photocatalytic degradation study of methylene blue by brookite TiO2 thin film under visible light irradiation. Mater. Today: Proc. 3, 3770–3778 (2016). https://doi.org/10.1016/j.matpr.2016.11.026

    Article  Google Scholar 

  29. W. Sangchay, Contact angle of TiO2/SnO2 thin films coated on glass substrate. Walailak J. Sci. & Tech. 11, 429–436 (2014). https://doi.org/10.14456/WJST.2014.21

    Article  Google Scholar 

  30. Y. Chen, C. Lee, M. Yeng, H. Chiu, The effect of calcination temperature on the crystallinity of TiO2 nanopowders. J. Cryst. Growth 247, 363–370 (2003). https://doi.org/10.1016/S0022-0248(02)01938-3

    Article  CAS  Google Scholar 

  31. Y. Li, A.T.J. White, S.H. Lim, Low-temperature synthesis and microstructural control of titania nano-particles. J. Solid State Chem. 177, 1372–1381 (2004). https://doi.org/10.1016/j.jssc.2003.11.016

    Article  CAS  Google Scholar 

  32. K. Venkateswarlu, M. Sandhyarani, T.A. Nellaippan, N. Rameshbabu, Estimation of crystallite size, lattice strain and dislocation density of nanocrystalline carbonate substituted hydroxyapatite by x-ray peak variance analysis. Proc. Mater. Sci. 5, 212–221 (2014). https://doi.org/10.1016/j.mspro.2014.07.260

    Article  CAS  Google Scholar 

  33. M.H. Kabir, M.M. Ali, M.A. Kaiyum, M.S. Rahman, Effect of annealing temperature on structural morphological and optical properties of spray pyrolized Al-doped ZnO thin films. J. Phys. Commun. 3, 1–11 (2019). https://doi.org/10.1088/23996528/ab496f

    Article  Google Scholar 

  34. S.F. Tseng, Investigation of post-annealing aluminum-doped zinc oxide (AZO) thin films by a graphene-based heater. Appl. Surf. Sci. 448, 163–167 (2018). https://doi.org/10.1016/j.apsusc.2018.04.036

    Article  CAS  Google Scholar 

  35. T. Liu, S. Xu, Z. Li, M. Wang, C. Sun, Temperature induced changes in resonance Raman spectra intensity of all-trans-β-carotene: changes in the fundamental, combination and overtone modes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 153–157 (2014). https://doi.org/10.1016/j.saa.2014.04.069

    Article  CAS  Google Scholar 

  36. A. Haghighatzadeh, Comparative analysis on optical and photocatalytic properties of chlorophyll/curcumin-sensitized TiO2 nanoparticles for phenol degradation. Bull. Mater. Sci. 43, 1–15 (2020). https://doi.org/10.1007/s12034-019-2016-9

    Article  CAS  Google Scholar 

  37. P. Praveen, G. Viruthagiri, S. Mugundan, N. Shanmugam, Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles: synthesized via sol–gel route. Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 622–629 (2014). https://doi.org/10.1016/j.saa.2013.09.037

    Article  CAS  Google Scholar 

  38. C. Brundha, C. Karthikeyan, S. Karuppuchamy, Development of nano-structured TiO2/CaCO3 core shell materials for efficient dye-sensitized solar cells. J. Phys. Sci. 1, 76–81 (2017)

    Google Scholar 

  39. N. Kuzu, N. Sato, Y. Arakawa, H. Horikoshi, N. Horii, Temperature and hydroxyl concentration dependences of diffusion coefficients of hydroxyl groups in vitreous silica at temperatures of 850–1200°C. Jpn. J. Appl. Phys. 56, 1–11 (2017). https://doi.org/10.7567/JJAP.56.111303

    Article  Google Scholar 

  40. F. He, F. Ma, J. Li, T. Li, G. Li, Effect of calcination temperature on the structural properties and photocatalytic activities of solvothermal synthesized TiO2 hollow nanoparticles. Ceram. Int. 40, 6441–6446 (2014). https://doi.org/10.1016/j.ceramint.2013.11.094

    Article  CAS  Google Scholar 

  41. S.S. Cetin, C.M. Bǎleanu, R.R. Nigmatullin, D. Bǎleanu, S. Ozcelik, Chemical bonding structure of TiO2 thin films grown on n-type Si. Thin Solid Films 519, 5712–5719 (2011). https://doi.org/10.1016/j.tsf.2011.04.021

    Article  CAS  Google Scholar 

  42. V.M. Khomenko, K. Langer, H. Rager, A. Fett, Electronic absorption by Ti3+ ions and electron delocalization in synthetic blue rutile. Phys. Chem. Miner. 25, 338–346 (1998). https://doi.org/10.1007/s002690050124

    Article  CAS  Google Scholar 

  43. P. Pandaram, B. Lawrence, N. Prithivikumaran, N. Jeyakumaran, Influence of mono energetic gamma radiation on structural and electrical properties of TiO2 thin film coated on p-type porous silicon. J. Mater. Sci. Mater. Electron. 30, 7135–7149 (2019). https://doi.org/10.1007/s10854-019-01031-7

    Article  CAS  Google Scholar 

  44. R. Lukose, V. Plausinaitiene, M. Vagner, N. Zurauskiene, S. Kersulis, V. Kubilius, K. Motiejuitis, B. Knasiene, V. Stankevic, Z. Saltyte, M. Skapas, A. Selskis, E. Naujalis, Relation between thickness, crystallite size and magnetoresistance of nanostructured La1−xSrxMnyO3±δ films for magnetic field sensors. Beilstein J. Nanotechnol. 10, 256–261 (2019). https://doi.org/10.3762/bjnano.10.24

    Article  CAS  Google Scholar 

  45. M.I. Khan, K.A. Bhatti, R. Qindeel, H.S. Althobaiti, N. Alonizan, Structural, electrical and optical properties of multilayer TiO2 thin films deposited by sol–gel spin coating. Results Phys. 7, 1437–1439 (2017). https://doi.org/10.1016/j.rinp.2017.03.023

    Article  Google Scholar 

  46. M. Ibadurrohman, K. Hellgardt, Morphological modification of TiO2 thin films as highly efficient photoanodes for photoelectrochemical water splitting. ACS Appl. Mater. Interfaces 7, 9088–9097 (2015). https://doi.org/10.1021/acsami.5b00853

    Article  CAS  Google Scholar 

  47. Y.J. Shi, R.J. Zhang, H. Zheng, D.H. Li, W. Wei, X. Chen, Y. Sun, Y.F. Wei, H.L. Lu, N. Dai, L.Y. Chen, Optical constants and band gap evolution with phase transition in Sub-20-nm-thick TiO2 films prepared by ALD. Nanoscale Res. Lett. 12, 1–9 (2017). https://doi.org/10.1186/s11671-017-2011-2

    Article  CAS  Google Scholar 

  48. N. Khedmi, M. Ben Rabeh, M. Kanzari, Thickness dependent structural and optical properties of vacuum evaporated CuIn5S8 thin films. Energy Procedia. 44, 61–68 (2014). https://doi.org/10.1016/j.egypro.2013.12.010

    Article  CAS  Google Scholar 

  49. A. Mills, M. Crow, A study of factors that change the wettability of titania films. Int. J. Photoenergy 2008, 1–7 (2008). https://doi.org/10.1155/2008/470670

    Article  CAS  Google Scholar 

  50. K. Vidal, G. Estibaliz, G. Amaia Martinez, A.I. Adrian, A. Estibaliz, The synthesis of a superhydrophobic and thermal stable silica coating via sol–gel process. Coatings 9, 627–640 (2019). https://doi.org/10.3390/coatings9100627

    Article  CAS  Google Scholar 

  51. N. Eustathopoulos, N. Sobczak, A. Passerone, K. Nogi, Measurement of contact angle and work of adhesion at high temperature. J. Mater. Sci. 40, 2271–2280 (2005). https://doi.org/10.1007/s10853-005-1945-4

    Article  CAS  Google Scholar 

  52. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemannt, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995). https://doi.org/10.1021/cr00033a004

    Article  CAS  Google Scholar 

  53. W. Wang, P. Serp, P. Kalck, J.L. Faria, Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol–gel method. J. Mol. Catal. A Chem. 235, 194–199 (2005). https://doi.org/10.1016/j.molcata.2005.02.027

    Article  CAS  Google Scholar 

  54. F.H. Suzaim, Z.M. Rosli, J.M. Juoi, T. Moriga, Effect of heating temperature on brookite TiO2 sol–gel coating for photo-induced hydrophilicity. J. Adv. Manuf. Technol. 13, 73–85 (2019)

    Google Scholar 

  55. A.B.D. Nandiyanto, R. Zaen, R. Oktiani, Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arab. J. Chem. 13, 1283–1296 (2020). https://doi.org/10.1016/j.arabjc.2017.10.010

    Article  CAS  Google Scholar 

  56. Z. Pap, L. Baia, K. Mogyorosi, A. Dombi, A. Oszko, V. Danciu, Correlating the visible light photoactivity of N-doped TiO2 with brookite particle size and bridged-nitro surface species. Catal. Commun. 17, 1–7 (2012). https://doi.org/10.1016/j.catcom.2011.10.003

    Article  CAS  Google Scholar 

  57. V. Stengl, D. Kralova, Photoactivity of brookite–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of hydrothermally prepared brookite. Mater. Chem. Phys. 129, 794–801 (2011). https://doi.org/10.1016/j.matchemphys.2011.05.006

    Article  CAS  Google Scholar 

  58. N. Yuangpho, D.T. Trinh, D. Channei, W. Khanitchaidecha, A. Nakaruk, The influence of experimental conditions on photocatalytic degradation of methylene blue using titanium dioxide particle. J. Aust. Ceram. Soc. 54, 557–564 (2018). https://doi.org/10.1007/s41779-018-0184-5

    Article  CAS  Google Scholar 

Download references

Funding

This research funding was supported by the Ministry of Higher Education Malaysia and Universiti Teknikal Malaysia Melaka (UTeM) with Grant FRGS/1/2016/TK05/FKP-AMC/F00319.

Author information

Authors and Affiliations

Authors

Contributions

All the authors analysed and discussed the results and contributed to the writing of the paper.

Corresponding author

Correspondence to Zulkifli Mohd Rosli.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johari, N.D., Rosli, Z.M. & Juoi, J.M. Effect of heat treatment temperature on the structural, morphological, optical and water contact angle properties of brookite TiO2 thin film deposited via green sol–gel route for photocatalytic activity. J Mater Sci: Mater Electron 33, 15143–15155 (2022). https://doi.org/10.1007/s10854-022-08433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08433-0

Navigation