Skip to main content
Log in

Khaya gum – a natural and eco-friendly biopolymer dielectric for low-cost organic field-effect transistors (OFETs)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nature provides a wide range of dielectric biopolymers that can be used in electronic devices. In this work, organic field-effect transistors (OFETs) using khaya gum (KG), a natural, biodegradable biopolymer that can be directly collected from khaya senegalensis trees, as the gate dielectric are demonstrated. The fabricated bottom gate/top contact poly (3,6-di (2-thien-5-yl)-2,5-di (2-octyldodecyl)-pyrrolo [3,4-c] pyrrole-1,4-dione) thieno [3,2-b] thiophene) (DPPTTT) –(polymethylmethacrylate) (PMMA) OFETs operate at 3 V with a saturation field-effect mobility (μsat) 0.3 cm2V−1 s−1, threshold voltage (Vth) -1.3 V, subthreshold swing (SS) 450 mV/dec, and current on/off ratios (ION/OFF) larger than 3 × 103. Significantly, the gate leakage current (IG) does not exceed 10–8 A for the gate-source voltage (VGS) \(\le\)-3 V. UV–Vis spectra analysis shows that the prepared khaya gum films exhibit low absorbance and high transparency (up to 90%) with a calculated optical band gap of about 4.3 eV. Thermal characterization shows two stages of decomposition and a glass transition at around 60 °C. Characterization of metal–insulator-metal (MIM) capacitors using khaya gum reveals that the KG-based MIM capacitors possess a relatively high capacitance per unit area (Ci) of 130 ± 3 nF/cm2 at 1 kHz. As a result, khaya gum emerges as the dielectric of choice for low voltage, transparent OFETs where environmentally friendly device manufacturing is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Authors confirm that all relevant data to this work, are available and can be shared on request from the authors.

References

  1. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    Article  CAS  Google Scholar 

  2. G. Li, R. Zhu, Y. Yang, Polymer solar cells. Nat. Photonics. 6, 153–161 (2012)

    Article  CAS  Google Scholar 

  3. N.M. Vichare, M.G. Pecht, Prognostics and health management of electronics. IEEE Trans. Compon. Packag. Technol. 29, 222–229 (2006)

    Article  Google Scholar 

  4. M. Pagliaro, R. Ciriminna, G. Palmisano, Flexible solar cells. Chem. Sus. Chem. 1, 880–891 (2008)

    Article  CAS  Google Scholar 

  5. J. Jang, Displays develop a new flexibility. Mater. Today. 9, 46–52 (2006)

    Article  CAS  Google Scholar 

  6. G. Bel, C. Van Brunschot, N. Easen, V. Gray, R. Kuehr, A. Milios, I. Mylvakanam, J. Pennington, A new circular vision for electronics: time for a global reboot, World Economic Forum, Davos (2019)

  7. M.P. Cenci, T. Scarazzato, D.D. Munchen, P.C. Dartora, H.M. Veit, A.M. Bernardes, P.R. Dias, Eco‐Friendly Electronics - A Comprehensive Review. Adv Mater. Technol. 7, 2001263 (2021)

    Article  Google Scholar 

  8. J. Volz, A. Rauschenbeutel, Triggering an optical transistor with one photon. J. Sci. 341, 725–726 (2013)

    CAS  Google Scholar 

  9. S. Sung, W.J. Lee, M.M. Payne, J.E. Anthony, C.H. Kim, M.H. Yoon, Large-area printed low-voltage organic thin film transistors via minimal-solution bar-coating. J. Mater. Chem. C. 8, 15112–15118 (2020)

    Article  CAS  Google Scholar 

  10. H. Matsui, Y. Takeda, S. Tokito, Flexible and printed organic transistors: From materials to integrated circuits. Org. Electron. 75, 105432 (2019)

    Article  CAS  Google Scholar 

  11. J.A. Chiong, H. Tran, Y. Lin, Y. Zheng, Z. Bao, Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. J. Adv. Sci. 8, 2101233 (2021)

    Article  CAS  Google Scholar 

  12. M. Agharkar, S. Kochrekar, S. Hidouri, M.A. Azeez, Trends in green reduction of graphene oxides, issues and challenges: A review. Mater. Res. Bull. 59, 323–328 (2014)

    Article  CAS  Google Scholar 

  13. R. Singh, Y.T. Lin, W.L. Chuang, F.H. Ko, A new biodegradable gate dielectric material based on keratin protein for organic thin film transistors. Org. Electron. 44, 198–209 (2017)

    Article  CAS  Google Scholar 

  14. S. Guo, Z. Wang, X. Chen, L. Li, J. Li, D. Ji, L. Li, W. Hu, Low-voltage polymer-dielectric-based organic field-effect, transistors and applications. Nano Select. 3, 1–19 (2021)

    Google Scholar 

  15. R.P. Ortiz, A. Fachetti, T.J. Marks, High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205–239 (2010)

    Article  CAS  Google Scholar 

  16. L. Li, S. Wang, Y. Xiao, Y. Wang, Recent advances in immobilization strategies for biomolecules in sensors using organic field-effect transistors. Trans. Tianjin Univ. 26, 424–440 (2020)

    Article  CAS  Google Scholar 

  17. F. Torricelli, I. Alessandri, E. Macchia, I. Vassalini, M. Maddaloni, L. Torsi, Green materials and technologies for sustainable organic transistors. Adv. Mater. Technol. 7, 2100445 (2021)

    Article  CAS  Google Scholar 

  18. M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwoediauer, A. Mumyatov, J.W. Fergus, V. Razumov, H. Sitter, N.S. Sariciftci, S. Bauer, Biocompatible and biodegradable materials for organic field effect transistors. Adv. Funct. Mat. 20, 4069–4076 (2010)

    Article  CAS  Google Scholar 

  19. J.W. Chang, C.G. Wang, C.Y. Huang, T. Da Tsai, T.F. Guo, T.C. Wen, Chicken albumen dielectrics in organic field-effect transistors. Adv. Mater. 23, 4077–4081 (2011)

    Article  CAS  Google Scholar 

  20. M. Seck, N. Mohammadian, A.K. Diallo, S. Faraji, M. Saadi, M. Erouel, E.H.B. Ly, K. Khirouni, L.A. Majewski, Low voltage organic transistors with water-processed gum arabic dielectric. Synth. Met. 267, 116447 (2020)

    Article  CAS  Google Scholar 

  21. J. Morgado, A.T. Pereira, A.M. Bragança, Q. Ferreira, S.C.M. Fernandes, C.S.R. Freire, A.J.D. Silvestre, C. Pascoal Neto, L. Alcacer, Self-standing chitosan films as dielectrics in organic thin-film transistors. Express Polym. Lett. 7, 960–965 (2013)

    Article  CAS  Google Scholar 

  22. M. Seck, N. Mohammadian, A.K. Diallo, S. Faraji, M. Saadi, M. Erouel, E.H.B. Ly, K. Khirouni, L.A. Majewski, Organic FETs using biodegradable almond gum as gate dielectric: A promising way towards green electronics. Org. Electron. 83, 105 (2020)

    Article  CAS  Google Scholar 

  23. M. Irimia-Vladu, E.D. Głowacki, G. Voss, S. Bauer, N.S. Sariciftci, Green and biodegradable electronics. Mater 15, 340–346 (2012)

    CAS  Google Scholar 

  24. C.Y. Hsieh, J.C. Hwang, T.H. Chang, J.Y. Li, S.H. Chen, L.K. Mao, L.S. Tsai, Y.L. Chueh, P.C. Lyu, S.S.H. Hsu, Enhanced mobility of organic thin film transistors by water absorption of collagen hydrolysate gate dielectric. J. Appl. Phys. Lett. 103, 023303 (2013)

    Article  CAS  Google Scholar 

  25. M. Irimia-Vladu, E.D. Głowacki, G. Schwabegger, L. Leonat, H.Z. Akpinar, H. Sitter, S. Bauer, N.S. Sariciftci, Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors. Green Chem. 15, 1473 (2013)

    Article  CAS  Google Scholar 

  26. W. Xu, S.W. Rhee, Compromise of electrical leakage and capacitance density effects: a facile route for high mobility and sharp subthreshold slope in low-voltage operable organic field-effect transistors. J. Mater. Chem. 21, 998–1004 (2011)

    Article  CAS  Google Scholar 

  27. C. Orwa, A. Mutua, R. Kindt, A. Simons, R. Jamnadass, Agroforestree Database: A Tree Reference and Selection Guide, version 4.0. World Agroforestry Centre ICRAF, Nairobi, Kenya, 2009.

  28. M. Saniewski, J. Ueda, K. Miyamoto, M. Horbowicz, J. Puchalski, Hormonal control of gummosis in Rosaceae. J. Fruit Ornam. Plant Res. 14, 137–144 (2006)

    CAS  Google Scholar 

  29. K. Konaté, M. Kiendrébéogo, M.B. Ouattara, A. Souza, A. Lamien-Meda, Y. Nongasida, N. Barro, J. Millogo-Rasolodimby, O.G. Nacoulma, Antibacterial potential of aqueous acetone extracts from five medicinal plants used traditionally to treat infectious diseases in Burkina Faso. Curr. Res. J. Biol. Sci. 3, 435–442 (2011)

    Google Scholar 

  30. D. Karou, M.H. Dicko, J. Simpore, A.S. Traore, Antioxidant and antibacterial activities of polyphenols from ethnomedicinal plants of Burkina Faso. Afr. J. Biotech. 4, 823–828 (2005)

    CAS  Google Scholar 

  31. O. Tidoune, J. Pousset, Contribution to the study of the anti-inflammatory action of the bark of Khaya senegalensis (Desr) A Juss. Rev. Méd. Pharm. Afr. 11, 131–142 (2007)

    Google Scholar 

  32. D.N.O. Kuevi, E. Ayertey, D.A. Bartels, F.W.A. Owusu, Evaluation of the disintegration properties of khaya senegalensis gum using paracetamol tablets. Asiatic. J. Med. Pharm. Res. 6, 1–8 (2019)

    Google Scholar 

  33. P. Prabhu, N. Ahamed, H. Matapady, M.G. Ahmed, R. Narayanacharyulu, D. Satyanarayana, E.P. Subrahmanayam, Investigation and comparison of colon specificity of novel polymer khaya gum with guar gum. J. Pharm. Sci. 23, 259–265 (2010)

    CAS  Google Scholar 

  34. M. Nakatani, S.A.M. Abdelgaleil, J. Kurawaki, H. Okamura, T. Iwagawa, M.J. Doe, Limonoids from the stem bark of khaya senegalensis. Nat. Prod. 64, 1261–1265 (2001)

    Article  CAS  Google Scholar 

  35. O.A. Odeku, A. Okunlola, A. Lamprecht, Microbead design for sustained drug release using four natural gums. Int. J. Biol. Macromol. 58, 120–133 (2013)

    Article  CAS  Google Scholar 

  36. J. Owusu, J.H. Oldham, I. Oduro, W.O. Ellis, A. Amissah, Assessing the suitability of locally produced gum exudates in the food industry. Int. J. Technol. 5, 24–30 (2016)

    Google Scholar 

  37. P.O. Ameh, Electrochemical and computational study of gum exudates from Canarium schweinfurthii as green corrosion inhibitor for mild steel in HCl solution. Int. J. Met. 2015, 1–13 (2015)

    Article  CAS  Google Scholar 

  38. S. Rajeh, A. Mhamdi, K. Khirouni, M. Amlouk, S. Guermazi, Experiments on ZnO: Ni thin films with under 1% nickel content. Opt. Laser Technol. 69, 113–121 (2015)

    Article  CAS  Google Scholar 

  39. N. Bouguila, M. Kraini, I. Halidou, E. Lacaze, H. Bouchriha, H.J. Bouzouita, Thickness effect on properties of sprayed In2S3 films for photovoltaic applications. Electron. Mater. 45, 829–838 (2016)

    Article  CAS  Google Scholar 

  40. M. Kraini, N. Bouguila, A. Bettaibi, J. Koaib, C. Vázquez-Vázquez, K. Khirouni, M.A. López-Quintela, S. Alaya, Some physical investigations on In2S3: Sn sprayed thin film. J. Mater. Sci. Mater. Electron. 27, 11556–11564 (2016)

    Article  CAS  Google Scholar 

  41. C. Cozic, L. Picton, M.R. Garda, F. Marlhoux, D. Le Cerf, Analysis of arabic gum: Study of degradation and water desorption processes. Food Hydrocoll. 23, 1930–1934 (2009)

    Article  CAS  Google Scholar 

  42. M. Seck, A.K. Diallo, M. Erouel, M. Saadi, B. Tiss, M.A. Wederni, A. Tall, E.H.B. Ly, D. Kobor, N. Bouguila, K. Khirouni, Dielectric investigation and material properties of almond gum thin films deposited by spray pyrolysis. Mater. Chem. Phys. 272, 1249 (2021)

    Article  CAS  Google Scholar 

  43. C.W. Vendruscolo, C. Ferrero, E.A.G. Pineda, J.L.M. Silveira, R.A. Freitas, M.R. Jiménez-Castellanos, T.M.B. Bresolin, Physicochemical and mechanical characterization of galactomannan from Mimosa scabrella: Effect of drying method. Carbohydr. Poly. 76, 86–93 (2009)

    Article  CAS  Google Scholar 

  44. E.O. Olorunsola, P.G. Bhatia, B.A. Tytler, M.U. Adikwu, Compatibility study of cashew and prosopis gums with some artemisinin derivatives. J. Drug Deliv. 2016, 1–7 (2016)

    Article  CAS  Google Scholar 

  45. N. Tripathy, V. Katiyar, Lactic Acid Oligomer (OLLA) grafted gum arabic based green adhesive for structural applications. Int. J. Biol. Macromol. 120, 711–720 (2018)

    Article  CAS  Google Scholar 

  46. J.W. Bae, H.S. Jang, W.H. Park, S.Y. Kim, Triacetate cellulose gate dielectric organic thin-film transistors. Org. Electron. 41, 186–189 (2017)

    Article  CAS  Google Scholar 

  47. S. Türkay, A. Tataroglu, Complex dielectric permittivity, electric modulus and electrical conductivity analysis of Au/Si3N4/p-GaAs (MOS) capacitor. J. Mater. Sci. Mater. Electron. 32, 11418–11425 (2021)

    Article  CAS  Google Scholar 

  48. J. Ko, W.L. Leong, Biopolymer based gate dielectrics for high performance organic thin film transistors. 2020 4th IEEE Electron Devices Technology and Manufacturing Conference Proceedings (EDTM) 978–1–7281–2539–8

  49. O. Larsson, E. Said, M. Berggren, X. Crispin, Insulator polarization mechanisms in polyelectrolyte-gated organic field-effect transistors. Adv. Funct. Mater. 19, 3334–3341 (2009)

    Article  CAS  Google Scholar 

  50. Z. Ahmad. Polymer Dielectric Materials, in “Dielectric material”. IntechOpen, 2012.

  51. P.V. Reddy, B. Ramesh, C.G. Reddy, Electrical conductivity and dielectric properties of zinc substituted lithium ferrites prepared by sol–gel method. Physica B: Condensed Matter 405, 1852–1856 (2010)

    Article  CAS  Google Scholar 

  52. T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto, T. Tsurumi, Domain size effect on dielectric properties of barium titanate ceramics. Jpn. J. Appl. Phys. 47, 7607–7611 (2008)

    Article  CAS  Google Scholar 

  53. S. Cetiner, S. Sirin, M. Olariu, A. Sezai Sarac, Frequency and temperature dependence of dielectric behavior for conductive acrylic composites. Adv. Polym. Technol. 35, 215 (2016)

    Article  CAS  Google Scholar 

  54. M.T. Ramesan, K. Surya, Synthesis, characterization, and properties of cashew gum graft poly (acrylamide)/magnetite nanocomposites. J. Appl. Polym. Sci. 133, 43496 (2016)

    Google Scholar 

  55. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5−xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457–10466 (2015)

  56. A. M. Akbaş, A. Tataroğlu, Ş. Altındal, Y. Azizian-Kalandaragh, Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures. J. Mater. Sci.: Mater. Electron. 32, 7657–7670 (2021)

    Article  CAS  Google Scholar 

  57. M. Egginger, S. Bauer, R. Schwödiauer, H. Neugebauer, N.S. Sariciftci, Current versus gate voltage hysteresis in organic field effect transistors. Monatsh. Chem. 140, 735–750 (2009)

    Article  CAS  Google Scholar 

  58. M. Irimia-Vladu, P.A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J.W. Fergus, V.F. Razumov, H. Sitter, S. Bauer, N.S. Sariciftci, Environmentally sustainable organic field effect transistors. Org. Electron. 11, 1974–1990 (2010)

    Article  CAS  Google Scholar 

  59. B. Stadlober, E. Karner, A. Petritz, A. Fian, M. Irimia-Vladu, Nature as microelectronic fab: Bioelectronics: Materials, transistors and circuits, 45th European Solid State Device Research Conference (ESSDERC) 10–17 (2015)

  60. S. Faraji, E. Danesh, D.J. Tate, M.L. Turner, L.A. Majewski, Cyanoethyl cellulose-based nanocomposites dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs). J. Phys. D: Appl. Phys. 49, 185102 (2016)

    Article  CAS  Google Scholar 

  61. M.F. Chang, P.T. Lee, S.P. McAlister, A. Chin, Small-subthreshold-swing and low-voltage flexible organic thin-film transistors which use HfLaO as the gate dielectric. IEEE Electron Device Lett. 30, 133–135 (2009)

    Article  CAS  Google Scholar 

  62. L.S. Tsai, J.C. Hwang, C.Y. Lee, Y.T. Lin, C.L. Tsai, T.H. Chang, Y.L. Chueh, H.F. Meng, Solution-based silk fibroin dielectric in n-type C60 organic field-effect transistors: mobility enhancement by the pentacene interlayer. J. Appl. Phys. Lett. 103, 233304 (2013)

    Article  CAS  Google Scholar 

  63. C.M. Keum, J.H. Bae, M.H. Kim, W. Choi, S.D. Lee, Solution-processed low leakage organic field-effect transistors with self-pattern registration based on patterned dielectric barrier. Org. Electron. 13, 778–783 (2012)

    Article  CAS  Google Scholar 

  64. H.L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D.M. De Leeuw, T. Muck, J. Geurts, L.W. Molenkamp, V. Wagner, Bias-induced threshold voltages shifts in thin-film organic transistors. J. Appl. Phys. Lett. 84, 3184–3186 (2004)

    Article  CAS  Google Scholar 

  65. A. Salleo, R.A. Street, Kinetics of bias stress and bipolaron formation in polythiophene. Phys. Rev. B. 70, 124 (2004)

    Google Scholar 

  66. I. Torres, D.M. Taylor, E. Itoh, Interface states and depletion-induced threshold voltage instability in organic metal-insulator-semiconductor structures. J. Appl. Phys. Lett. 85, 314–316 (2004)

    Article  CAS  Google Scholar 

  67. D.B.A. Rep, A.F. Morpurgo, W.G. Sloof, T.M. Klapwijk, Mobile ionic impurities in organic semiconductors. J. Appl. Phys. Lett. 93, 2082–2090 (2003)

    CAS  Google Scholar 

  68. J.B. Chang, V. Subramanian, Effect of active layer thickness on bias stress effect in pentacene thin-film transistors. J. Appl. Phys. Lett. 88, 1234 (2006)

    Google Scholar 

  69. Y. Jeong, K. Song, D. Kim, C.Y. Koo, J. Moon, Bias stress stability of solution-processed zinc tin oxide thin-film transistors. J. Electrochem. Soc. 156, 808 (2009)

    Article  CAS  Google Scholar 

  70. R.D. Yang, J. Park, C.N. Colesniuc, I.K. Schuller, W.C. Trogler, A.C. Kummel, Ambient induced degradation and chemically activated recovery in copper phthalocyanine thin film transistors. J. Appl. Phys. 102, 034515 (2007)

    Article  CAS  Google Scholar 

  71. A.K. Diallo, M. Erouel, J. Tardy, E. Andre, J.L. Garden, Stability of pentacene top gated thin film transistors. J. Appl. Phys. Lett. 91, 183508 (2007)

    Article  CAS  Google Scholar 

  72. Y. Liu, A.K. Diallo, H.E. Katz, Ion polarization behavior in alumina under pulsed gate bias stress. J. Appl. Phys. Lett. 106, 112906 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Tall and A. K. Diallo thank the CEA-MITIC (Centre d’Excellence Africainen Mathématiques, Informatique et TIC) for financial support. This work was funded by the Tunisian Ministry of Higher Education and Scientific Research and Senegalese Ministry of Higher Education, Research and Innovation through funds accorded to the implied research Labs.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, and design. Material characterizations were performed by AT and MS. OFETs fabrication and characterization were performed by SF, NM and LAM. AKD, ME, LAM and KK contributed to the results analysis. The first draft of the manuscript was written by AT and all authors corrected the previous versions of the manuscript. All authors read and approved this submitted version.

Corresponding authors

Correspondence to Abdou K. Diallo, Kamel Khirouni or Leszek A. Majewski.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tall, A., Faraji, S., Diallo, A.K. et al. Khaya gum – a natural and eco-friendly biopolymer dielectric for low-cost organic field-effect transistors (OFETs). J Mater Sci: Mater Electron 33, 15283–15295 (2022). https://doi.org/10.1007/s10854-022-08388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08388-2

Navigation