Skip to main content
Log in

Study of structural, impedance spectroscopy and dielectric properties of Li and Al co-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we investigate the effect of lithium and aluminium co-doping (0, 0.1, 0.2, and 0.3 mol%) on the phase formation, microstructure, dielectric, and electrical properties of (Ba0.85Ca0.15) (Ti0.90Zr0.10)O3 ceramics prepared by solid state reaction method. Rietveld refinement of X-ray diffraction patterns reveals the coexistence between the orthorhombic (Amm2) and tetragonal (P4mm) phases in all samples, and the amount of tetragonal phase increased with increasing Li and Al content. All ceramics reveal dense microstructures having relative density ~ 94–98% and the average grain size is significantly reduced by increasing Li–Al content from 0.1 to 0.3%. The temperature dependence of dielectric constants at different frequencies exhibited diffuse phase transition behaviour with no frequency dispersion. The refined grains and high density of BCLAxTZ ceramics leads to an improvement of dielectric properties, the composition BCLA0.3TZ exhibits excellent dielectric properties [ε = 7712.98, tan(δ) = 1.49 at.% 1 kHz]. The conduction mechanism have been investigated by means of impedance spectroscopy at various temperatures (100–450 °C) and the values of resistance, and conductivity, associated with the grain and grain boundaries were evaluated. When increasing the Li–Al content, an increase of dc conductivity was observed throughout the whole explored temperature rang. The appearance of two semicircles in Nyquist plots suggests the contribution of both grain as well as grain boundary contribution to overall electrical behavior in all samples. The grains effect is gradually replaced by grain boundaries effect with increasing temperature. The frequency dependence of ac conductivity was wellfitted according to Jonscher’s power law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. S.H. Wang, Y.L. Chai, W.H. Lee, A novel approach to sintering (Ba, Ca)(Ti, Zr)O3 multilayer ceramic capacitors with Ni electrodes. J. Eur. Ceram. Soc. 32(8), 1711–1723 (2012)

    Article  CAS  Google Scholar 

  2. C.H. Wang, Physical and electrical properties of lead-free (Bi0.5Na 0.5)TiO3-(Bi0.5K0.5)TiO3 Ceramics. Adv. Mater. Res. 239, 3240–3243 (2011)

    Article  CAS  Google Scholar 

  3. J.P. Hernández Lara, M. Pérez Labra, F.R. Barrientos Hernández, J.A. Romero Serrano, E.O. Ávila Dávila, P. Thangarasu, A. Hernández Ramirez, Structural evolution and electrical properties of BaTiO3 doped with Gd3+. Mater. Res. 20(2), 538–542 (2017)

    Article  CAS  Google Scholar 

  4. W. Peng, L. Li, S. Yu, P. Yang, K. Xu, Dielectric properties, microstructure and charge compensation of MnO2-doped BaTiO3-based ceramics in a reducing atmosphere. Ceram. Int. 47(20), 29191–29196 (2021)

    Article  CAS  Google Scholar 

  5. S.A. Issa, H.M. Zakaly, M. Pyshkina, M.Y. Mostafa, M. Rashad, T.S. Soliman, Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: an experimental investigation. Radiat Phys Chem. 180, 109281 (2021)

    Article  CAS  Google Scholar 

  6. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3– SrTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 31, 7786–7797 (2020)

    CAS  Google Scholar 

  7. Y. Slimani, S.E. Shirsath, E. Hannachi, M.A. Almessiere, M.M. Aouna, N.E. Aldossary et al., (BaTiO3)1–x + (Co0.5Ni0.5Nb0.06Fe1.94O4) x nanocomposites: structure, morphology, magnetic and dielectric properties. J. Am. Ceram. Soc. 104, 5648–5658 (2021)

    Article  CAS  Google Scholar 

  8. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3, ceramics. J. Mater. Sci.: Mater. Electron. 30, 9520–9530 (2019)

    CAS  Google Scholar 

  9. Y. Slimani, M.A. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B.E. Ozcelik, I. Ercan, Investigation of structural, morphological, optical, magnetic and dielectric properties of (1–x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 166933 (2020)

    Article  CAS  Google Scholar 

  10. Y. Slimani, B. Unal, E. Hannachi, A. Selmi, M.A. Almessiere, M. Nawaz, A. Baykal, I. Ercan, M. Yildiz, Frequency and dc bias voltage dependent dielectric properties and electrical, conductivity of BaTiO3-SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019)

    Article  CAS  Google Scholar 

  11. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, G. AlFalah, L.F. AlOusi, G. Yasin, M. Iqbal, Study on the addition of SiO2 nanowires to BaTiO3: structure, morphology, electrical and dielectric properties. J. Phys. Chem. Solids 156, 110183 (2021)

    Article  CAS  Google Scholar 

  12. M.H.A. Mhareb, Y. Slimanic, Y.S. Alajeramid, M.I. Sayyede, E. Lacommeg, M.A. Almessierec, Structural and radiation shielding properties of BaTiO3 ceramic with different concentrations of Bismuth and Ytterbium. Ceram. Int. 46(18), 28877–28886 (2020)

    Article  CAS  Google Scholar 

  13. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, I. Ercan, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 13509–13518 (2019)

    CAS  Google Scholar 

  14. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  CAS  Google Scholar 

  15. Y.C. Lee, C.S. Chiang, High dielectric constant of (Ba0.96Ca0.04)(Ti0.85Zr0.15)O3 multilayer ceramic capacitors with Cu doped Ni electrodes. J. Alloys Compd. 509(24), 6973–6979 (2011)

    Article  CAS  Google Scholar 

  16. S. Thomas, Z. Shujun, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 113–126 (2007)

    Article  CAS  Google Scholar 

  17. W. Bai et al., Dielectric properties and relaxor behavior of high curie temperature (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3–Bi(Mg0.5Ti0.5)O3 lead-free ceramics. Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2012.10.028

    Article  Google Scholar 

  18. X. Chao et al., Electrical properties and low temperature sintering of BiAlO3 doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 26, 7331–7340 (2015)

    CAS  Google Scholar 

  19. J. Wu, W. Wu, D. Xiao, J. Wang, Z. Yang, Z. Peng, Q. Chen, J. Zhu, (Ba, Ca)(Ti, Zr)O3-BiFeO3 lead-free piezoelectric ceramics. Curr. Appl. Phys. 12(2), 534–538 (2012)

    Article  Google Scholar 

  20. L. Zhang et al., High-temperature stability of Ba0.99Ca0.01Zr0.02Ti0.98O3-doped LiTaO3 lead-free ceramics. J. Mater. Sci.: Mater. Electron. 33, 5878–5885 (2022)

    CAS  Google Scholar 

  21. M.N. Al-Aaraji, D.A. Hall, Influence of K0.5Bi0.5TiO3 on the structure, dielectric and ferroelectric properties of (Ba, Ca)(Zr, Ti)O3 ceramics. J. Eur. Ceram. Soc. 38, 2344–2352 (2018)

    Article  CAS  Google Scholar 

  22. N. Zidi, A. Chaouchi, M. Rguiti, Y. Lorgouilloux, C. Courtois, Dielectric, ferroelectric, piezoelectric properties, and impedance spectroscopy of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3–x% (K0.5Bi0.5)TiO3 lead-free ceramics. Ferroelectrics 551, 152–177 (2019)

    Article  CAS  Google Scholar 

  23. P. Shi, T. Li, X. Lou, Z. Yu, X. Zhu, C. Zhou, Q. Liu, L. He, X. Zhang, S. Yang, Large electric-field-induced strain and energy storage properties in Bi0.5Na0.5TiO3 (0.5Ba0.7Ca0.3TiO3-0.5BaTi0.8Zr0.2O3) lead-free relaxor ferroelectric ceramics. J. Alloys Compd. 860, 158369 (2021)

    Article  CAS  Google Scholar 

  24. S. Luo, D.Y. Zheng, C. Zhang et al., Effects of BLT doping on electrical properties and relaxation behavior of BCZT-BLT ceramics. J. Mater. Sci.: Mater. Electron. 31, 21005–21016 (2020)

    CAS  Google Scholar 

  25. Y. Wu, X. Liu, Q. Zhang, M. Jiang, Y. Liu, X. Liu, High piezoelectric coefficient of Ba0.85Ca0.15Ti0.9Zr0.1O3 Sr(Cu1/3Ta2/3)O3 ceramics. J. Mater. Sci. Mater. Electron. 24, 5199–5203 (2013)

    Article  CAS  Google Scholar 

  26. X. Yan, M. Zheng, Y. Hou, M. Zhu, Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic. J. Eur. Ceram. Soc. 37(7), 2583–2589 (2017)

    Article  CAS  Google Scholar 

  27. V. Jarkov, S.J. Allan, C. Bowen, H. Khanbareh, Piezoelectric materials and systems for tissue engineering and implantable energy harvesting devices for biomedical applications. Int. Mater. Rev. (2021). https://doi.org/10.1080/09506608.2021.1988194

    Article  Google Scholar 

  28. C. Zhao, H. Wang, J. Xiong, J. Wu, Composition-driven phase boundary and electrical properties in Ba0.94Ca0.06Ti1-xMxO3 (M = Sn, Hf, Zr) lead-free ceramics. Dalton Trans. 45, 6466–6480 (2016)

    Article  CAS  Google Scholar 

  29. R.L. Nayak, S.S. Dash, Y. Zhang, M.P. Sahoo, Enhanced dielectric, thermal stability, and energy storage properties in compositionally engineered lead-free ceramics at morphotropic phase boundary. Ceram. Int. 47(12), 17220–17233 (2021)

    Article  CAS  Google Scholar 

  30. D.S. Keeble, F. Benabdallah, P.A. Thomas, M. Maglione, J. Kreisel, Appl. Phys. Lett. 102, 092903 (2013)

    Article  CAS  Google Scholar 

  31. D. Damjanovic, A. Biancoli, L. Batooli, A. Vahabzadeh, J. Trodahl, Appl. Phys. Lett. 100, 192907 (2012)

    Article  CAS  Google Scholar 

  32. X. Xiang, J. Xiangping, C. Chao, Tu. Jiang Xingan, C.Y. Nini, Effects of Cr2O3 doping on the microstructure and electrical properties of (Ba, Ca)(Zr, Ti)O3 lead-free ceramics. Front. Mater. Sci. Mater. Sci. 10(2), 203–210 (2016)

    Article  Google Scholar 

  33. J. Ma, X. Liu, W. Li, High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98)O3 lead-free ceramics by low-temperature sintering. J. Alloys Compd. 581, 642–645 (2013)

    Article  CAS  Google Scholar 

  34. Z. Sun, Y. Pu, Z. Dong, Y. Hu, X. Liu, P. Wang, M. Ge, Dielectric and piezoelectric properties and PTC behavior of Ba0.9Ca0.1Ti0.9Zr0.1O3−xLa ceramics prepared by hydrothermal method. Mater. Lett. 118, 1–4 (2014)

    Article  CAS  Google Scholar 

  35. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Temperature stability in dy-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 lead-free ceramics with high piezoelectric coefficient. J. Am. Ceram. Soc. 94, 3181–3183 (2011)

    Article  CAS  Google Scholar 

  36. H. Abdmouleh, I. Kriaa, N. Abdelmoula, Z. Sassi, H. Khemakhem, The effect of Zn2+ and Nb5+ substitution on structural, dielectric, electrocaloric properties, and energy storage density of Ba0.95Ca0.05Ti0.95Zr0.05O3 ceramics. J. Alloys Compd. 878, 160355 (2021)

    Article  CAS  Google Scholar 

  37. Y.-J. Kao, Su. Che-Yi, C. Pithan, D.F. Hennings, C.-Y. Huang, R. WaserAm, Hydroxyl defect effect on reoxidation of Sc-doped (Ba, Ca)(Ti, Zr)O3 fired in reducing atmospheres. J. Am. Ceram. Soc. 99(4), 1311–1317 (2016)

    Article  CAS  Google Scholar 

  38. X. Chen, Y. Li, J. Zeng, L. Zheng, C.H. Park, G. Li, Phase transition and large electrostrain in lead-free Li-doped (Ba, Ca)(Ti, Zr)O3 ceramics. J. Am. Ceram. Soc. 99(6), 2170–2174 (2016)

    Article  CAS  Google Scholar 

  39. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scr. Mater. 65(9), 771–774 (2011)

    Article  CAS  Google Scholar 

  40. K. Xu, P. Yang, W. Peng, L. Li, Temperature-stable MgO-doped BCZT lead-free ceramics with ultra-high energy storage efficiency. J. Alloy. Compd. 829, 154516 (2020)

    Article  CAS  Google Scholar 

  41. Y. Liu, Y. Pu, Z. Sun, Q. Jin, Relaxor behavior and complex impedance studies on Ba0.9Ca0.1Ti0.9Zr0.1O3- 0.06Fe3+ ceramics prepared by hydrothermal method. Mater. Res. Bull. 70, 195–199 (2015)

    Article  CAS  Google Scholar 

  42. Y. Lin, J. Wang, L. Jiang, Y. Chen, C.W. Nan, High permittivity Li and Al doped NiO ceramics. Appl. Phys. Lett. 85(23), 5664–5666 (2004)

    Article  CAS  Google Scholar 

  43. Z. Jin, Q. Li, S. Zhong, J. Xu, C. Zhou, G. Chen, C. Yuan, G. Rao, Enhanced electrical properties in donor–acceptor co-doped Ba(Ti0.92Sn0.08)O3 ceramics. J. Mater. Sci.: Mater. Electron. 30(9), 8712–8720 (2019)

    CAS  Google Scholar 

  44. Y. Zhang, H.J. Sun, W. Chen, Li-modified Ba0.99Ca 0.01Zr 0.02Ti 0.98O3 lead-free ceramics with highly improved piezoelectricity. J. Alloys Compd. 694, 745–751 (2017)

    Article  CAS  Google Scholar 

  45. X. Chen, X. Ruan, K. Zhao, X. He, J. Zeng, Y. Li, L. Zheng, C.H. Park, G. Li, Low sintering temperature and high piezoelectric properties of Li-doped (Ba, Ca)(Ti, Zr)O3 lead-free ceramics. J. Alloys Compd. 632, 103 (2015)

    Article  CAS  Google Scholar 

  46. X. Chen, Y. Li, J. Zeng, L. Zheng, C.H. Park, G. Li, Phase transition and large electrostrain in lead-free Li-doped (Ba, Ca)(Ti, Zr)O3 ceramics. J. Am. Ceram. Soc. 99, 2170 (2016)

    Article  CAS  Google Scholar 

  47. U. Intatha, P. Parjansri, K. Pengpat, G. Rujijanagul, T. Tunkasiri, S. Eitssayeam, Phase formation, dielectric and ferroelectric properties of Mn, Al doped BCZT ceramics by molten salt method. Integr. Ferroelectr.: Int. J. 139(1), 83–91 (2012)

    Article  CAS  Google Scholar 

  48. P. Adhikari, R. Mazumder, G.K. Sahoo, Electrical and mechanical properties of 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 (BZT−BCT) lead free ferroelectric ceramics reinforced with nano-sized Al2O3. Ferroelectrics 490(1), 60–69 (2016)

    Article  CAS  Google Scholar 

  49. Y. Feng, W.L. Li, D. Xu, W.P. Cao, Y. Yu, W.D. Fei, Enhanced piezoelectric properties and constricted hysteresis behaviour in PZT ceramics induced by Li+–Al3+ ionic pairs. RSC Adv. 6, 36118–36124 (2016)

    Article  CAS  Google Scholar 

  50. D. Xu, W.L. Li, L.D. Wang, W. Wang, W.P. Cao, W.D. Fei, Large piezoelectric properties induced by doping ionic pairs in BaTiO3 ceramics. Acta Mater. 79, 84–92 (2014)

    Article  CAS  Google Scholar 

  51. J. Zhang, Y. Hao, M. Bi, G. Dong, X. Liu, K. Bi, Outstanding photoluminescence in Pr3+-doped perovskite ceramics. Micromachines 9, 419 (2018)

    Article  Google Scholar 

  52. Z. Hanani, D. Mezzane, M. Amjoud, A.G. Razumnaya, S. Fourcade, Y. Gagou, K. Hoummada, M. El Marssi, M. Gouné, Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. J. Mater. Sci. Mater. Electron. 30, 6430–6438 (2019)

    Article  CAS  Google Scholar 

  53. G.K. Sahoo, R. Mazumder, Mazumder, Low temperature synthesis of Ba(Zr0.2Ti0.8)O3- 0.5(Ba0.7Ca0.3)TiO3 nanopowders by solution based auto combustion method. J. Mater. Sci. Electron. 25, 3515 (2014)

    Article  CAS  Google Scholar 

  54. Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, I.A. Luk’yanchuk, M. Gouné, Enhancement of dielectric properties of lead-free BCZT ferroelectric ceramics by grain size engineering. Superlattices Microstruct. 127, 109–117 (2019)

    Article  CAS  Google Scholar 

  55. H. Baloria, D. Nanda, S. Thakur, R. Rai, A. Singh, Structural, dielectric and impedance response of BCT reinforcement on BZT matrix. J. Mater. Sci.: Mater. Electron. 32, 19688–19702 (2021)

    CAS  Google Scholar 

  56. S. Yotthuan, C. Kornphom, S. Prasertpalichat et al., Phase ratio, dielectric, ferro-electric, and magnetic properties of BCTZ ceramics with CuO doping synthesized bythe solid state combustion technique. Phys. Status Solidi (2019). https://doi.org/10.1002/pssa.201800803

    Article  Google Scholar 

  57. S. Yotthuan, T. Suriwong, S. Pinitsoontorn, S. Chootin, T. Bongkarn, Phase formation, dielectric, ferroelectric and magnetic properties of Cr2O3 doped (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 ceramics. Integr. Ferroelectr. 195(1), 154–165 (2019)

    Article  CAS  Google Scholar 

  58. W. Cai, Q. Zhang, C. Zhou, R. Gao, F. Wang, G. Chen, X. Deng, Z. Wang, N. Deng, L. Cheng, C. Fu, Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba, Ca)(Ti, Zr)O3 ceramics. J. Mater. Sci. 55, 9972–9992 (2020)

    Article  CAS  Google Scholar 

  59. X. Liu, Z. Chen, D. Wu, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, Enhancing pyroelectric properties of Li-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics by optimizing calcination temperature. Jpn. J. Appl. Phys. 201(54), 071501 (2015)

    Article  CAS  Google Scholar 

  60. C. Liu, Q. Wang, X. Wu, B. Sa, H. Su, L. Luo, C. Li, X. Zheng, T. Lin, Z. Sun, Boosting upconversion photoluminescence and multielectrical properties via Er-doping-modulated vacancy control in Ba0.85Ca0.15Ti0.9Zr0.1O3. ACS Omega 4(6), 11004–11013 (2019)

    Article  CAS  Google Scholar 

  61. S. Yotthuan, T. Suriwong, S. Pinitsoontorn, T. Bongkarn, Effect of Fe2O3 doping on phase formation, microstructure, electric andmagnetic properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics. Integr. Ferroelectr. 187, 100–112 (2018)

    Article  CAS  Google Scholar 

  62. M.S. Alkathy, K.K. Bokinala, K.C. James Raju, Effect of Li and Bi co-substituted on structural and physical properties of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 27(4), 3175–3181 (2015)

    Google Scholar 

  63. C.K. Tan, K. Yao, J. Ma, Effects of LiF on the structure and properties of Ba0.85Ca0.15Zr0.1Ti0.9O3 lead free piezoelectric ceramics. Int. J. Appl. Ceram. Technol. 10(4), 701–706 (2013)

    Article  CAS  Google Scholar 

  64. K.C. Varada Rajulu, B. Tilak, K.S. Rao, Electricalconductivity and dielectric properties of Bi0.5(Na0.7K0.2Li0.1)0.5TiO3 ceramic material. Am. J. Mater. Sci. 2(2), 15–21 (2012)

    Article  Google Scholar 

  65. R. Hayati, M.A. Bahrevar, Y. Ganjkhanlou, V. Rojas, J. Koruza, Electromechanical properties of Ce-doped (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. J. Adv. Ceram. 8(2), 186–195 (2019)

    Article  CAS  Google Scholar 

  66. Q. Lou, X. Shi, X. Ruan, J. Zeng, Z. Man, L. Zheng, C.H. Park, G. Li, Ferroelectric properties of Li-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 101, 3597–3604 (2018)

    Article  CAS  Google Scholar 

  67. B. Parijaa, T. Badapandab, S.K. Rout, L.S. Cavalcanted, S. Panigrahia, E. Longod et al., Morphotropic phase boundary and electrical properties of 1–x[Bi0.5Na0.5]TiO3–x Ba[Zr0.25Ti0.75]O3 lead-free piezoelectric ceramics. Ceram. Int. 39, 4877–4886 (2013)

    Article  CAS  Google Scholar 

  68. Y. Yang, J. Guo, W. Ma, H. Zhao, M. Ma, J. Wu, M. Chi, Effects of V2O5 doping on the structure and electrical properties of BCZT lead-free piezoelectric ceramics. J. Mater. Sci.: Mater. Electron. 30, 2854–2863 (2019)

    CAS  Google Scholar 

  69. Y. Han, X. Ren, Z. Sun, L. Li, S. Yu, Relaxor behavior and tunable property of lead-free Li+ -doped Ba0.9Ca0.1Zr0.2Ti0.8O3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 15064–15074 (2019)

    CAS  Google Scholar 

  70. W. Zheng, J. Lin, X. Liu, W. Yang, Y. Li, Enhanced ferroelectric and piezoelectric performance of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics upon Ce and Sb co-doping. RSC Adv. 11, 2616–2623 (2021)

    Article  CAS  Google Scholar 

  71. Z. Jin, Q. Li, S. Zhong, J. Xu, C. Zhou, G. Chen, C. Yuan, G. Rao, Enhanced electrical properties in donor–acceptor co-doped Ba(Ti0.92Sn0.08)O3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 8712–8720 (2019)

    CAS  Google Scholar 

  72. S.M. Bobade, D.D. Gulwade, A.R. Kulkarni, P. Gopalan, Dielectric properties of A- and B-site-doped BaTiO3 (I): La- and Al-doped solid solutions. J. Appl. Phys. 97, 074105 (2005)

    Article  CAS  Google Scholar 

  73. T. Ikeda, Some studies on the ternary system (Ba–Pb–Ca)TiO3. J. Phys. Soc. Jpn. 13, 335–336 (1958)

    Article  CAS  Google Scholar 

  74. D. Wang, R. Yu, S. Feng, W. Zheng, T. Takei, N. Kumada, Hydrothermal synthesis of perovskite-type solid solution of (1–x)BaTiO3xLa2/3TiO3. Solid State Ion. 151, 329–333 (2002)

    Article  CAS  Google Scholar 

  75. T. Badapanda, S.K. Rout, Phase formation and dielectric study of Bi doped BaTi0.75Zr0.25O3 ceramic. Curr. Appl. Phys. 9, 727–731 (2009)

    Article  Google Scholar 

  76. L. Xie, C. Wang, Y. Wang, G. Wu, X. Huang, Grain size effect on the mechanical behavior of metastable Fe-23Cr-8.5Ni alloy. Metals 9, 734 (2019)

    Article  CAS  Google Scholar 

  77. S. Sonia, R.K. Patel, C. Prakash, P. Kumar, Structural, dielectric and ferroelectric study of microwave sintered lanthanum substituted BaTiO3 ceramics. Mater. Chem. Phys. 130, 191–195 (2011)

    Article  CAS  Google Scholar 

  78. M.K. Adak, D. Dhak, Mater. Res. Express 6, 125082 (2019)

    Article  CAS  Google Scholar 

  79. D. Bochenek, P. Niemiec, G. Dercz, Materials 13, 1996 (2020)

    Article  CAS  Google Scholar 

  80. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in difused-phase-transition crystals. Ferroelectrics 44(1), 55–61 (1982)

    Article  CAS  Google Scholar 

  81. A. Hussain, A. Maqbool, R.A. Malik, A. Zaman, J.H. Lee, T.K. Song, J.H. Lee, W.J. Kim, M.H. Kim, Structural, dielectric and field-induced strain properties of La-modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 ceramics. Korean J. Mater. Res. 25(10), 566–570 (2015)

    Article  CAS  Google Scholar 

  82. Z. Raddaoui, S. El Kossi, J. Dhahri, N. Abdelmoula, K. Taibi, Study of diffuse phase transition and relaxor ferroelectric behavior of Ba0.97Bi0.02Ti0.9Zr0.05Nb0.04O3 ceramic. RSC Adv. 9, 2412–2425 (2019)

    Article  CAS  Google Scholar 

  83. J.D. Bobić, M.V. Petrović, J. Banys, B.D. Stojanović, Electrical properties of niobium doped barium bismuth-titanate ceramics. Mater. Res. Bull. 47, 1874–1880 (2012)

    Article  CAS  Google Scholar 

  84. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadi, O.M. Aldossary, Y. Al-Douri, Improved room temperature dielectric properties of Gd3+ and Nb5+ co-doped barium titanate ceramics. J. Alloys Compd. 883, 160836 (2021)

    Article  CAS  Google Scholar 

  85. F.D. Morrison, D.C. Sinclair, A.R. West, Doping mechanisms and electrical properties of La doped BaTiO3ceramics. Int. J. Inorg. Mater. 3, 1205–1210 (2001)

    Article  CAS  Google Scholar 

  86. V.S. Puli, A. Kumar, D.B. Chrisey, M. Tomozawa, J.F. Scott, R.S. Katiyar, Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors. J. Phys. D 44, 395403 (2011)

    Article  CAS  Google Scholar 

  87. K. Kumari, A. Prasad, K. Prasad, Dielectric, impedance/modulus and conductivity studies on [Bi0.5(Na1-xKx)0.5]0.94Ba0.06TiO3, (0.16 ≤ x ≤0.20) lead-free ceramics. Am. J. Mater. Sci. 6(1), 1–18 (2016)

    CAS  Google Scholar 

  88. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492–496 (1972)

    Article  CAS  Google Scholar 

  89. H. Jain, C.H. Hsieh, J. Non-Cryst, Solids 1408, 172–174 (1994)

    Google Scholar 

  90. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mater. Res. 19(1), 1–8 (2016)

    Article  CAS  Google Scholar 

  91. R. Tang, Ch. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite. Sci. Rep. 5, 13645 (2015)

    Article  CAS  Google Scholar 

  92. M. Baazaoui, A. Moulahi, N. Hamdaoui, M. Oumezzine, Study of the dielectric behavior as a function of the frequency at different temperatures on the sample Pr0.525Y0.075Ca0.1Sr0.3Mn0.975Fe0.025O3. Int. J. Atom. Nucl. Phys. 6, 025 (2021)

    Google Scholar 

  93. R. Mguedla, A.B. Kharrat, M. Saadi, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric and optical properties of PrCrO3 ortho-chromite. J. Alloys Compd. 812, 152130 (2020)

    Article  CAS  Google Scholar 

  94. W. Chen, W. Zhu, O.K. Tan, X.F. Chen, Frequency and temperature dependent impedance spectroscopy of cobalt ferritecomposite thick films. J. Appl. Phys. 108, 034101 (2010)

    Article  CAS  Google Scholar 

  95. D. Johnson, Zview, impedance software, version 2.1a (Scribner Associates Inc., Southern Pines, 1990)

    Google Scholar 

  96. J.B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Act. 51, 473–1479 (2006)

    Article  CAS  Google Scholar 

  97. F.D. Morrison, D.J. Jung, J.F. Scott, Constant-phase-element (CPE) modeling of ferroelectric random-access memory lead zirconate-titanate (PZT) capacitors. J. Appl. Phys. 101, 094112 (2007)

    Article  CAS  Google Scholar 

  98. T. Mondal, B.P. Majee, S. Das, T.P. Sinha, T.R. Middya, T. Badapanda, P.M. Sarun, A comparative study on electrical conduction properties of Sr-substituted Ba1−xSrxZr0.1Ti0.9O3 (x = 0.00−0.15) ceramics. Ionics 23(9), 2405 (2017)

    Article  CAS  Google Scholar 

  99. A. Kaushal, S.M. Olhero, B. Singh, D.P. Fagg, I. Bdikin, J.M.F. Ferreira, Impedance analysis of 0.5BaZr0.2Ti0.8O3-0.5Ba0.7Ca0.3TiO3 ceramics consolidated from micro-granules. Ceram. Int. 40(7, Part B), 10593 (2014)

    Article  CAS  Google Scholar 

  100. A.H. Salama, A.M. Youssef, Y.S. Rammahand, M. El-Khatib, YBCO as a transition metal oxide ceramic material for energy storage. Bull. Natl. Res. Centre 43(1), 89 (2019)

    Article  Google Scholar 

  101. D. Adler, J. Feinlein, Electrical and optical properties of narrow-band materials. Phys. Rev. B 2, 3112–3134 (1970)

    Article  Google Scholar 

  102. A.K. Jonscher, The universal dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: Study conception and design: NZ and AC. X-ray diffraction data acquisition: CC, YL, MR. Impedance spectroscopy analysis and interpretation of results: NZ and AC. Draft manuscript preparation: NZ.

Corresponding author

Correspondence to Naima Zidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidi, N., Chaouchi, A., Rguiti, M. et al. Study of structural, impedance spectroscopy and dielectric properties of Li and Al co-doped Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics. J Mater Sci: Mater Electron 33, 14468–14487 (2022). https://doi.org/10.1007/s10854-022-08369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08369-5

Navigation