Skip to main content
Log in

Investigating the role of copper oxide (CuO) nanorods in designing flexible piezoelectric nanogenerator composed of polyacrylonitrile (PAN) electrospun web-based fibrous material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, a flexible light weight lead-free piezoelectric nanogenerator has been fabricated using electrospun web based on polyacrylonitrile (PAN) and copper oxide (CuO) nanorods. The influence of CuO nanorods on the piezoelectric performance of PAN nanofibrous structure (in the form of a nanocomposite) has been investigated critically. Structural analysis of the electrospun nanocomposite has been done by FTIR and XRD techniques. Morphology of the developed material has been evaluated by scanning electron microscopy (SEM), whereas thermal behaviour has been investigated by thermogravimetric analyser (TGA) and differential scanning calorimetry (DSC). Finally, piezoelectric performance of the device has been measured by a digital oscilloscope. The piezoelectric nanogenerator (PAN/0.5% CuO) has shown an output voltage of ~ 5 V, current ~ 0.172 µA and power density ~ 0.215 µW/cm2 (when pressure is applied by finger tapping). The same nanogenerator has shown ~ 1.25 V and ~ 118 nA output voltage and short circuit current, respectively by using an automatic force-imparting machine. The fabricated nanogenerator is a potent device in lieu of the conventional battery powered devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Research data is not available for this article.

References

  1. M. Khalifa, A. Mahendran, S. Anandhan, Polym. Compos. 40, 1663 (2019)

    Article  CAS  Google Scholar 

  2. F.R. Fan, W. Tang, Z.L. Wang, Adv. Mater. 28, 4283 (2016)

    Article  CAS  Google Scholar 

  3. Z.L. Wang, W. Wu, Angew. Chem. Int. Ed. 51, 11700 (2012)

    Article  CAS  Google Scholar 

  4. Y. Niu, K. Yu, Y. Bai, H. Wang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62, 108 (2015)

    Article  Google Scholar 

  5. Y. Kim, K.Y. Lee, S.K. Hwang, C. Park, S.W. Kim, J. Cho, Adv. Funct. Mater. 24, 6262 (2014)

    Article  CAS  Google Scholar 

  6. R. Guo, Y. Guo, H. Duan, H. Li, H. Liu, ACS Appl. Mater. Interfaces 9, 8271 (2017)

    Article  CAS  Google Scholar 

  7. S. Bairagi, S.W. Ali, Eur. Polym. J. 116, 554 (2019)

    Article  CAS  Google Scholar 

  8. S. Bairagi, S.W. Ali, J. Mater. Sci. 54, 11462 (2019)

    Article  CAS  Google Scholar 

  9. S. Bairagi, S. W. Ali, Energy Technol. 7, 1900538 (2019)

  10. S. Bairagi, S. W. Ali, Org. Electron. 78, 105547 (2020)

  11. S.C. Mathur, J.I. Scheinbeim, B.A. Newman, J. Appl. Phys. 56, 2419 (1984)

    Article  CAS  Google Scholar 

  12. L. Huang, X. Zhuang, J. Hu, L. Lang, P. Zhang, Y. Wang, X. Chen, Y. Wei, X. Jing, Biomacromolecules 9, 850 (2008)

    Article  CAS  Google Scholar 

  13. S. Banerjee, S. Bairagi, S. Wazed Ali, Ceram. Int. 47, 16402 (2021)

  14. S. Bairagi, S.W. Ali, Energy 198, 117385 (2020)

    Article  CAS  Google Scholar 

  15. S. Bairagi, S.W. Ali, Int. J. Energy Res. 5306 (2020)

  16. S. Bairagi, S.W. Ali, Soft Matter 16, 4876 (2020)

    Article  CAS  Google Scholar 

  17. W. Wang, Y. Zheng, X. Jin, Y. Sun, B. Lu, H. Wang, J. Fang, H. Shao, T. Lin, Nano Energy 56, 588 (2019)

  18. Y. Liu, Y. Xue, H. Ji, J. Liu, J. Appl. Polym. Sci. 137, 1 (2020)

    Google Scholar 

  19. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Prog. Polym. Sci. 39, 683 (2014)

    Article  CAS  Google Scholar 

  20. J. Grobelny, M. Sokól, E. Turska, Polymer (Guildf) 25, 1415 (1984)

    Article  CAS  Google Scholar 

  21. P. Rizzo, Macromolecules 29, 8852 (1996)

    Article  CAS  Google Scholar 

  22. R.J. Hobson, A.H. Windle, Macromolecules 26, 6903 (1993)

    Article  CAS  Google Scholar 

  23. M. Minagawa, K. Miyano, M. Takahashi, F. Yoshii, Macromolecules 21, 2387 (1988)

    Article  CAS  Google Scholar 

  24. G. Henrici-Olive, S. Olive, Adv. Polym. Sci. 123 (1979)

  25. Y. Sun, Y. Liu, Y. Zheng, Z. Li, J. Fan, L. Wang, X. Liu, J. Liu, W. Shou, ACS Appl. Mater. Interfaces 12, 54936 (2020)

    Article  CAS  Google Scholar 

  26. H. Ueda, S.H. Carr, Polym. J. 16, 661 (1984)

    Article  CAS  Google Scholar 

  27. G. Zhao, X. Zhang, X. Cui, S. Wang, Z. Liu, L. Deng, A. Qi, X. Qiao, L. Li, C. Pan, Y. Zhang, L. Li, ACS Appl. Mater. Interfaces 10, 15855 (2018)

    Article  CAS  Google Scholar 

  28. L. Yuan, W. Fan, X. Yang, S. Ge, C. Xia, S.Y. Foong, R.K. Liew, S. Wang, Q. Van Le, S.S. Lam, Compos. Commun. 25, 100680 (2021)

    Article  Google Scholar 

  29. Y. Zhao, Y. Zhao, R. Huang, R. Liu, H. Zhou, J. Eur. Ceram. Soc. 31, 1939 (2011)

    Article  CAS  Google Scholar 

  30. E. Li, H. Kakemoto, S. Wada, T. Tsurumi, J. Am. Ceram. Soc. 90, 1787 (2007)

    Article  CAS  Google Scholar 

  31. D. Hassan, A.H. Ah-Yasari, Bull. Electr. Eng. Informatics 8, 52 (2019)

    Article  Google Scholar 

  32. I. Karbownik, O. Rac-Rumijowska, M. Fiedot-Toboła, T. Rybicki, H. Teterycz, Materials (Basel). 12, (2019)

  33. J. Jayaprakash, N. Srinivasan, P. Chandrasekaran, E.K. Girija, Spectrochim. Acta—A Mol. Biomol. Spectrosc. 136, 1803 (2015)

    Article  CAS  Google Scholar 

  34. M. Hashmi, S. Ullah, I.S. Kim, Curr. Res. Biotechnol. 1, 1 (2019)

    Article  Google Scholar 

  35. S.M. Badawy, A.M. Dessouki, J. Phys. Chem. B 107, 11273 (2003)

    Article  CAS  Google Scholar 

  36. D.W. Chae, B.C. Kim, J. Appl. Polym. Sci. 99, 1854 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Science and Engineering Research Board (SERB), The Govt. of India for funding (File No. YSS/2014/000964) and also Device Development Programme (DDP), Department of Science and Technology (DST, Govt. of India) (sanction letter no.: DST/TDT/DDP-05/2018(G)) for financial support to execute part of this research. The authors are also grateful to Central research Facility (CRF) and Nano Research facility (NRF), Indian Institute of Technology Delhi for providing all the characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

SB and SWA have conceptualized the research idea. SB, AC, SB, AT and AS have executed the experimentation in the laboratory and generated the research data. SB, AC and SB have prepared the manuscript. SWA has reviewed and edited the prepared manuscript.

Corresponding author

Correspondence to S. Wazed Ali.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Research involving human and animal participants

This research article does not involve any human participants and/or animals for studies by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairagi, S., Chowdhury, A., Banerjee, S. et al. Investigating the role of copper oxide (CuO) nanorods in designing flexible piezoelectric nanogenerator composed of polyacrylonitrile (PAN) electrospun web-based fibrous material. J Mater Sci: Mater Electron 33, 13152–13165 (2022). https://doi.org/10.1007/s10854-022-08254-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08254-1

Navigation